Search Results

You are looking at 1 - 10 of 10 items for

  • Author: Xin Huang x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Chen Xu, Xingji You, Weina Liu, Qianqian Sun, Xiaoying Ding, Ying Huang, and Xin Ni

Prostaglandin F2α (PGF2A) has multiple roles in the birth process in addition to its vital contractile role. Our previous study has demonstrated that PGF2A can modulate uterine activation proteins (UAPs) in cultured pregnant human myometrial smooth muscle cells (HMSMCs). The objective of this study was to define the signalling pathways responsible for PGF2A modulation of UAPs in myometrium. It was found that PGF2A stimulated the expression of (GJA1) connexin 43 (CX43), prostaglandin endoperoxide synthase 2 (PTGS2) and oxytocin receptor (OTR) in cultured HMSMCs. The inhibitors of phospholipase C (PLC) and protein kinase C (PKC) blocked PGF2A-stimulated expression of CX43. The inhibitors of ERK, P38 and NFκB also blocked the effect of PGF2A on CX43 expression, whereas PI3K and calcineurin/nuclear factor of activated T-cells (NFAT) pathway inhibitors did not reverse the effect of PGF2A on CX43. For PTGS2 and OTR, PLC, PI3K, P38 and calcineurin/NFAT signalling pathways were involved in PGF2A action, whereas PKC and NFκB signalling were not involved. In addition, PGF2A activated NFAT, PI3K, NFκB, ERK and P38 signalling pathways. Our data suggest that PGF2A stimulates CX43, PTGS2 and OTR through divergent signalling pathways.

Free access

Xin Huang, Cuifang Hao, Xiaofang Shen, Xiaoyan Liu, Yinghua Shan, Yuhua Zhang, and Lili Chen

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. The abnormalities of endocrine and intra-ovarian paracrine interactions may change the microenvironment for oocyte development during the folliculogenesis process and reduce the developmental competence of oocytes in PCOS patients who are suffering from anovulatory infertility and pregnancy loss. In this microenvironment, the cross talk between an oocyte and the surrounding cumulus cells (CCs) is critical for achieving oocyte competence. The aim of our study was to investigate the gene expression profiles of CCs obtained from PCOS patients undergoing IVF cycles in terms of oocyte maturation by using human Genome U133 Plus 2.0 microarrays. A total of 59 genes were differentially expressed in two CC groups. Most of these genes were identified to be involved in one or more of the following pathways: receptor interactions, calcium signaling, metabolism and biosynthesis, focal adhesion, melanogenesis, leukocyte transendothelial migration, Wnt signaling, and type 2 diabetes mellitus. According to the different expression levels in the microarrays and their putative functions, six differentially expressed genes (LHCGR, ANGPTL1, TNIK, GRIN2A, SFRP4, and SOCS3) were selected and analyzed by quantitative RT-PCR (qRT-PCR). The qRT-PCR results were consistent with the microarray data. Moreover, the molecular signatures (LHCGR, TNIK, and SOCS3) were associated with developmental potential from embryo to blastocyst stage and were proposed as biomarkers of embryo viability in PCOS patients. Our results may be clinically important as they offer a new potential strategy for competent oocyte/embryo selection in PCOS patients.

Free access

Tian-Hong Zhu, Shao-Jie Ding, Tian-Tian Li, Li-Bo Zhu, Xiu-Feng Huang, and Xin-Mei Zhang

Endometriosis is an estrogen-dependent disease. Previous research has shown that abnormal enzymes associated with estrogen (E2) metabolism and an increased number of mast cells (MCs) in endometriomas are implicated in the pathogenesis of endometriosis. However, it remains unclear how MCs mediate the role of E2 in endometriosis. Accordingly, we investigated whether E2 was associated with the number of MCs, and the rate of degranulation, in local ovarian endometriomas, as well as the role of E2 on MCs during the pathogenesis of endometriosis. Using enzyme-linked immunosorbent assay and immunohistochemistry, we found that concentrations of E2, and the number and activity of MCs, were significantly higher in ovarian endometriomas than in controls, and that these parameters were correlated with the severity of endometriosis-associated dysmenorrhea. By measuring the release of hexosaminidase, we found that the rate of RBL2H3 cell degranulation increased after E2 treatment. Furthermore, activation of RBL2H3 cells by E2 was found to trigger the release of biologically active nerve growth factor, which promotes neurite outgrowth in PC12 cells and also sensitizes dorsal root ganglion cells via upregulation of Nav1.8 and transient receptor potential cation channel (subfamily V member 1) expression levels. When treated with E2, endometriotic cells could promote RBL2H3 cell recruitment by upregulating expression levels of stem cell factor, transforming growth factor-β and monocyte chemoattractant protein-1; these observations were not evident with control endometrial cells. Thus, elevated E2 concentrations may be a key factor for degranulation and recruitment of MCs in ovarian endometriomas, which play a key role in endometriosis-associated dysmenorrhea.

Free access

Pan-Pan Cheng, Jun-Jie Xia, Hai-Long Wang, Ji-Bing Chen, Fei-Yu Wang, Ye Zhang, Xin Huang, Quan-Jun Zhang, and Zhong-Quan Qi

Maternal diabetes adversely affects preimplantation embryo development and oocyte maturation. Thus, it is important to identify ways to eliminate the effects of maternal diabetes on preimplantation embryos and oocytes. The objectives of this study were to investigate whether islet transplantation could reverse the effects of diabetes on oocytes. Our results revealed that maternal diabetes induced decreased ovulation; increased the frequency of meiotic spindle defects, chromosome misalignment, and aneuploidy; increased the relative expression levels of Mad2 and Bub1; and enhanced the sensitivity of oocytes to parthenogenetic activation. Islet transplantation prevented these detrimental effects. Therefore, we concluded that islet transplantation could reverse the effects of diabetes on oocytes, and that this technique may be useful to treat the fundamental reproductive problems of women with diabetes mellitus.

Free access

Xin Huang, Chang Liu, Cuifang Hao, Qianqing Tang, Riming Liu, Shaoxia Lin, Luping Zhang, and Wei Yan

Abstract

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women and is characterised by polycystic ovaries, hyperandrogenism and chronic anovulation. Although the clinical and biochemical signs of PCOS are typically heterogeneous, abnormal folliculogenesis is considered a common characteristic of PCOS. Our aim is to identify the altered miRNA and mRNA expression profiles in the cumulus cells of PCOS patients to investigate their molecular function in the aetiology and pathophysiology of PCOS. In this study, the miRNA expression profiles of the cumulus cell samples isolated from five PCOS and five control patients were determined by an miRNA microarray. At the same time, the altered mRNA profiles of the same cumulus cell samples were also identified by a cDNA microarray. From the microarray data, 17 miRNAs and 1263 mRNAs showed significantly different expression in the PCOS cumulus cells. The differentially expressed miRNA-509-3p and its potential target gene (MAP3K8) were identified from the miRNA and mRNA microarrays respectively. The expression of miRNA-509-3p was up-regulated and MAP3K8 was down-regulated in the PCOS cumulus cells. The direct interaction between miRNA-509-3p and MAP3K8 was confirmed by a luciferase activity assay in KGN cells. In addition, miRNA-509-3p mimics or inhibitor transfection tests in KGN cells further confirmed that miRNA-509-3p improved oestradiol (E2) secretion by inhibiting the expression of MAP3K8. These results help to characterise the pathogenesis of anovulation in PCOS, especially the regulation of E2 production.

Free access

Qiaoge Niu, Maosheng Cao, Chenfeng Yuan, Yuwen Huang, Zijiao Zhao, Boqi Zhang, Xin Wang, Yameng Wei, Wenjing Fan, Xu Zhou, and Chunjin Li

Nerve growth factor (NGF) has been proved to play important roles in male reproductive physiology, but the molecular mechanisms of NGF action remain unclear. In this study, the effects of NGF on the growth of newborn bovine testicular Sertoli (NBS) cells and the related signaling pathways were investigated. The NBS cells were treated in vitro with NGF (100 ng/mL) for 18 h. The expression levels of cell proliferation related genes, INHBB, and cytoplasmic specialization related gene were determined using real-time PCR and Western blot. The roles of PI3K/AKT and MAPK/ERK pathways in NGF-induced cell proliferation were investigated. It was found that NGF regulates proliferation and function of NBS cells via its receptor NTRK1 by activating the PI3K/ATK and MAPK/ERK signaling pathways. The study will help to further understand the role of NGF in male reproduction and provide new therapeutic targets for reproductive dysfunctions in male animals.

Restricted access

Junfang Shi, Mengtian Yang, Xin Cao, Qitao Huang, Fang He, You Peng, Jinru Cui, Wenqian Chen, Yiming Xu, Wenyan Geng, Laixin Xia, Dunjin Chen, and Shan Xiao

In brief

Placenta accreta spectrum (PAS) has an urgent need for reliable prenatal biomarkers. This study profiled the circular RNAs (circRNAs) in PAS placenta and maternal blood and identified two circRNAs can regulate trophoblast cells invasion and serve as noninvasive prenatal biomarkers for PAS prediction.

Abstract

PAS is one of the most alarming obstetric diseases with high mortality rates. The regulating mechanism underlying PAS remains to be investigated, and reliable blood biomarkers for PAS have not emerged. Circular RNAs (circRNAs) have become important regulators and biomarkers for disparate human diseases. However, the circRNA profiles of PAS were not reported, and the regulatory role and predictive value of circRNAs in PAS were unknown. Here, we comprehensively profiled the circRNAs in the placenta of PAS by transcriptome sequencing and analysis and uncovered 217 abnormally expressed circRNAs. Through competing endogenous RNA network analysis, we found that the target genes of upregulated circRNAs in PAS were enriched in placenta development-related pathways and further uncovered two circRNAs, circPHACTR4 and circZMYM4, that could regulate trophoblast cells invasion and migration in vitro. Finally, we verified that circPHACTR4 and circZMYM4 were also upregulated in the maternal peripheral blood of PAS women before delivery using transcriptome sequencing and RT-qPCR and evaluated their predictive value by ROC curves. We found that circPHACTR4 and circZMYM4 could serve as effective predicting biomarkers for PAS (area under the curve (AUC): 0.86 and 0.85) and propose an improved model for PAS prenatal prediction by combining the conventional ultrasound diagnosis with the new circRNA predictive factors (AUC: 0.91, specificity: 0.89, sensitivity: 0.82).Altogether, this work provides new resources for deciphering the biological roles of circRNAs in PAS, identified two circRNAs that could regulate trophoblast cells invasion during placentation, and revealed two noninvasive diagnostic markers for PAS.

Open access

Ning-Xin Qin, Yi-Ran Zhao, Wei-Hui Shi, Zhi-Yang Zhou, Ke-Xin Zou, Chuan-Jin Yu, Xia Liu, Ze-Han Dong, Yi-Ting Mao, Cheng-Liang Zhou, Jia-Le Yu, Xin-Mei Liu, Jian-Zhong Sheng, Guo-Lian Ding, Wen-Long Zhao, Yan-Ting Wu, and He-Feng Huang

The number of children born after assisted reproductive technology (ART) is accumulating rapidly, and the health problems of the children are extensively concerned. This study aims to evaluate whether ART procedures alter behaviours in male offspring. Mouse models were utilized to establish three groups of offspring conceived by natural conception (NC), in vitro fertilization and embryo transfer (IVF-ET), and frozen-thawed embryo transfer (IVF-FET), respectively. A battery of behaviour experiments for evaluating anxiety and depression levels, including the open field test (OFT), elevated plus maze (EPM) test, light/dark transition test (L/DTT), tail suspension test (TST), forced swimming test (FST), and sucrose preference test (SPT) was carried out. Aged (18 months old), but not young (3 months old), male offspring in the IVF-ET and IVF-FET groups, compared with those in the NC group, exhibited increased anxiety and depression-like behaviours. The protein expression levels of three neurotrophins in PFC or hippocampus in aged male offspring from the IVF-ET and IVF-FET groups reduced at different extent, in comparison to NC group. RNA sequencing (RNA-Seq) was performed in the hippocampus of 18 months old offspring to further explore the gene expression profile changes in the three groups. KEGG analyses revealed the coexisted pathways, such as PI3K-Akt signalling pathway, which potentially reflected the similarity and divergence in anxiety and depression between the offspring conceived by IVF-ET and IVF-FET. Our research suggested the adverse effects of advanced age on the psychological health of children born after ART should be highlighted in the future.

Free access

Mian Liu, Xia Chen, Qing-Xian Chang, Rui Hua, Yan-Xing Wei, Li-Ping Huang, Yi-xin Liao, Xiao-Jing Yue, Hao-Yue Hu, Fei Sun, Si-Jia Jiang, Song Quan, and Yan-Hong Yu

Small extracellular vesicles (sEVs) are important mediators of cell-to-cell communication involved in the successful establishment of a pregnancy. Human decidual stromal cells play a key role in regulating trophoblast invasion. Nevertheless, the regulatory functions of decidual stromal cells-derived sEVs in human trophoblast cells are still unclear. In this study, primary human decidual stromal cells were isolated, and immortalized human endometrial stromal cell line (HESCs) were decidualized into human decidual stromal cells (HDSCs) using hormonal cocktail containing medroxy progesterone 17-acetate (MPA), estrogen and cAMP analog. HDSC-sEVs were isolated from both primary human decidual stromal cells and immortal HDSCs, respectively, and identified by transmission electron microscopy and western blotting. EV uptake assay indicated that HDSC-sEVs could be uptaken by trophoblast cells. HDSC-sEVs could increase the invasiveness and the expression level of N-cadherin of trophoblast cells with elevated phosphorylation of SMAD2 and SMAD3 in the cells. Silencing of N-cadherin could block cell invasion induced by HDSC-sEVs, while knockdown of SMAD2 and SMAD3 could inhibit the upregulation of N-cadherin in trophoblast cells. Taken together, our results suggested a regulatory effect of HDSC-sEVs in the invasion of trophoblast cells, and HDSC-sEVs may be important mediators of trophoblasts during embryo implantation and placentation.

Free access

Xue-Ying Zhang, Yi-Meng Xiong, Ya-Jing Tan, Li Wang, Rong Li, Yong Zhang, Xin-Mei Liu, Xian-Hua Lin, Li Jin, Yu-Ting Hu, Zhen-Hua Tang, Zheng-Mu Wu, Feng-Hua Yin, Zheng-Quan Wang, Ye Xiao, Jian-Zhong Sheng, and He-Feng Huang

Fertilization failure often occurs during in vitro fertilization (IVF) cycles despite apparently normal sperm and oocytes. Accumulating evidence suggests that mitochondria play crucial roles in the regulation of sperm function and male fertility. 3-Nitrophthalic acid (3-NPA) can induce oxidative stress in mitochondria, and melatonin, as an antioxidant, can improve mitochondrial function by reducing mitochondrial oxidative stress. The role of sperm mitochondrial dysfunction in fertilization failure during IVF is unclear. The present study revealed that spermatozoa with low, or poor, fertilization rates had swollen mitochondria, increased mitochondria-derived ROS, and attenuated mitochondrial respiratory capacity. 3-NPA treatment enhanced mitochondrial dysfunction in sperm. Spermatozoa with poor fertilization rates, and spermatozoa treated with 3-NPA, had reduced penetration ability. The concentration of melatonin was decreased in semen samples with low and poor fertilization rates. Melatonin, not only decreased excessive mitochondria-derived ROS, but also ‘rescued’ the reduced penetration capacity of spermatozoa treated with 3-NPA. Taken together, the study suggested that mitochondria-derived ROS and mitochondrial respiratory capacity are independent bio-markers for sperm dysfunction, and melatonin may be useful in improving sperm quality and overall male fertility.