Search Results
You are looking at 1 - 1 of 1 items for
- Author: Xinjie Chen x
- Refine by access: All content x
Search for other papers by Yang Yu in
Google Scholar
PubMed
Search for other papers by Chenhui Ding in
Google Scholar
PubMed
Search for other papers by Eryao Wang in
Google Scholar
PubMed
Search for other papers by Xinjie Chen in
Google Scholar
PubMed
Search for other papers by Xuemei Li in
Google Scholar
PubMed
Search for other papers by Chunli Zhao in
Google Scholar
PubMed
Search for other papers by Yong Fan in
Google Scholar
PubMed
Search for other papers by Liu Wang in
Google Scholar
PubMed
Search for other papers by Nathalie Beaujean in
Google Scholar
PubMed
Search for other papers by Qi Zhou in
Google Scholar
PubMed
Search for other papers by Alice Jouneau in
Google Scholar
PubMed
Search for other papers by Weizhi Ji in
Google Scholar
PubMed
Even though it generates healthy adults, nuclear transfer in mammals remains an inefficient process. Mainly attributed to abnormal reprograming of the donor chromatin, this inefficiency may also be caused at least partly by a specific effect of the cloning technique which has not yet been well investigated. There are two main procedures for transferring nuclei into enucleated oocytes: fusion and piezoelectric microinjection, the latter being used mostly in mice. We have, therefore, decided to compare the quality and the developmental ability, both in vivo and in vitro, of embryos reconstructed with electrofusion or piezoelectric injection. In addition, the effect of piezo setups of differing electric strengths was investigated. Along with the record of the rate of development, we compared the nuclear integrity in the blastomeres during the first cleavages as well as the morphological and cellular quality of the blastocysts. Our results show that the piezo-assisted micromanipulation can induce DNA damage in the reconstructed embryos, apoptosis, and reduced cell numbers in blastocysts as well as a lower rate of development to term. Even if piezo-driven injection facilitates a faster and more efficient rate of reconstruction, it should be used with precaution and with as low parameters as possible.