Search Results
You are looking at 1 - 2 of 2 items for
- Author: Xinrui Lan x
- Refine by access: All content x
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, P.R. China
Search for other papers by Yanfang Wu in
Google Scholar
PubMed
Search for other papers by Zhenzi Zuo in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, P.R. China
Search for other papers by Zheng Wang in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, P.R. China
Search for other papers by Hanghang Liu in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, P.R. China
Search for other papers by Qi Zhou in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, P.R. China
Search for other papers by Subi Ren in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, P.R. China
Search for other papers by Xinrui Lan in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, P.R. China
Search for other papers by Yong Zhang in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, P.R. China
Search for other papers by Yongsheng Wang in
Google Scholar
PubMed
In brief
Almost total lack of sperm-borne RNAs is regarded as one of the key factors that leads to the abnormal development of somatic cell nuclear transfer embryo. This paper reveals a need for us to further explore the roles of the paternal regulatory factors on embryonic development in early embryos.
Abstract
Mature sperm contain both coding and non-coding RNAs, which can be delivered into an oocyte with the sperm at fertilization. Accumulating evidences show that these sperm-borne RNAs play crucial roles in epigenetic reprogramming, cytoskeleton remodeling, embryonic development, and offspring phenotype. Almost total lack of sperm-borne RNAs is regarded as one of the key factors that leads to the abnormal development of somatic cell nuclear transfer (SCNT) embryo. bta-miR-183 was found to be highly expressed in bovine sperm and can be delivered into oocytes during fertilization in our previous study, and in this study, EZR was confirmed as a target gene of bta-miR-183 in early embryos by bioinformatics, luciferase, and gain-of-function and loss-of-function experiments. Scanning electron microscopy showed that the density of microvilli on the surface of SCNT embryos was significantly higher than that onin vitro fertilized embryos and was significantly reduced by injection of bta-miR-183 mimic. EZR-siRNA injected into SCNT embryos had a similar effect. This indicated that the lack of bta-miR-183 might lead to abnormal changes in microvilli by downregulating ezrin protein. In addition, gain-of-function studies showed that bta-miR-183 significantly improved developmental competence of SCNT embryo in terms of cleavage (76.63% vs 64.32%, P < 0.05), blastocyst formation (43.75% vs 28.26%, P < 0.05), apoptotic index (5.21% vs 12.64%, P < 0.05), and the trophoblast ratio (32.65% vs 25.58%, P < 0.05) in day 7 blastocysts. Thus, the present study indicated that bta-miR-183 might play crucial roles in the formation of microvilli and embryo development by regulating expression of EZR mRNA.
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China
Search for other papers by Baobao Zhao in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China
Search for other papers by Heqiang Li in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China
Search for other papers by Han Zhang in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China
Search for other papers by Xinrui Lan in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China
Search for other papers by Xingchen Ren in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China
Search for other papers by Liangyi Zhang in
Google Scholar
PubMed
Search for other papers by Huiming Ma in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China
Search for other papers by Yong Zhang in
Google Scholar
PubMed
Key Laboratory of Animal Biotechnology, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, PR China
Search for other papers by Yongsheng Wang in
Google Scholar
PubMed
In brief
HSP90AA1 is a ubiquitous molecular chaperone that can resist cellular stress, such as oxidative stress and apoptosis, and mediate the efficacy and protein folding of normal cells during heat stress, as well as many other functions. This study further reveals the role of HSP90AA1 in bovine oocyte maturation and early embryonic development.
Abstract
HSP90AA1, a highly abundant and ubiquitous molecular chaperone, plays important roles in various cellular processes including cell cycle control, cell survival, and hormone signaling pathways. In this study, we investigated the functions of HSP90AA1 in bovine oocyte and early embryo development. We found that HSP90AA1 was expressed at all stages of development, but was mainly located in the cytoplasm, with a small amount distributed in the nucleus. We then evaluated the effect of HSP90AA1 on the in vitro maturation of bovine oocytes using tanespimycin (17-AAG), a highly selective inhibitor of HSP90AA1. The results showed that inhibition of HSP90AA1 decreased nuclear and cytoplasmic maturation of oocytes, disrupted spindle assembly and chromosome distribution, significantly increased acetylation levels of α-tubulin in oocytes and affected epigenetic modifications (H3K27me3 and H3K27ac). In addition, H3K9me3 was increased at various stages during early embryo development. Finally, the impact of HSP90AA1 on early embryo development was explored. The results showed that inhibition of HSP90AA1 reduced the cleavage and blastocyst formation rates, while increasing the fragmentation rate and decreasing blastocyst quality. In conclusion, HSP90AA1 plays a crucial role in bovine oocyte maturation as well as early embryo development.