Search Results
You are looking at 1 - 3 of 3 items for
- Author: Xu Tengteng x
- Refine by access: All content x
Search for other papers by Zubing Cao in
Google Scholar
PubMed
Search for other papers by Tengteng Xu in
Google Scholar
PubMed
Search for other papers by Xu Tong in
Google Scholar
PubMed
Search for other papers by Dandan Zhang in
Google Scholar
PubMed
Search for other papers by Chengxue Liu in
Google Scholar
PubMed
Search for other papers by Yiqing Wang in
Google Scholar
PubMed
Search for other papers by Di Gao in
Google Scholar
PubMed
Search for other papers by Lei Luo in
Google Scholar
PubMed
Search for other papers by Ling Zhang in
Google Scholar
PubMed
Search for other papers by Yunsheng Li in
Google Scholar
PubMed
Search for other papers by Yunhai Zhang in
Google Scholar
PubMed
HASPIN kinase-catalyzed phosphorylation of histone H3 on threonine 3 (H3T3p) directs the activity and localization of chromosomal passenger complex (CPC) and spindle assembly checkpoint (SAC) to regulate chromosome condensation and segregation in both mitosis and meiosis. However, the function of HASPIN kinase in the meiotic maturation of porcine oocytes is not yet known. Here, we found that HASPIN mRNA is constantly expressed in porcine oocyte maturation and subsequent early embryo development. H3T3p is highly enriched on chromosomes at germinal vesicle breakdown (GVBD) stage and thereafter maintains a low level in progression through metaphase I (MI) to metaphase II (MII). Correspondingly, H3T3p was completely abolished in oocytes treated with an inhibitor of HASPIN kinase. Functionally, inhibition of HASPIN activity led to a significant reduction in the rate of oocyte meiotic maturation and the limited cumulus expansion. Additionally, HASPIN inhibition caused both spindle disorganization and chromosome misalignment in oocytes at MI and MII stage. Importantly, HASPIN inhibition severely prevented deacetylation of several highly conserved lysine (K) residues of histone H3 and H4 including H3K9, H3K14, H4K5, H4K8, H4K12 and H4K16 on the metaphase chromosomes during oocyte meiotic maturation. Taken together, these results demonstrate that HASPIN kinase regulates porcine oocyte meiotic maturation via modulating histone deacetylation.
Search for other papers by Xingxing Wang in
Google Scholar
PubMed
Search for other papers by Huihui Yu in
Google Scholar
PubMed
Search for other papers by Xuan Li in
Google Scholar
PubMed
Search for other papers by Ruixian Tian in
Google Scholar
PubMed
Search for other papers by Chenyi Xu in
Google Scholar
PubMed
Search for other papers by Tengteng Li in
Google Scholar
PubMed
Search for other papers by Jiajia Fei in
Google Scholar
PubMed
Search for other papers by Xue Du in
Google Scholar
PubMed
Search for other papers by Zongzhi Yin in
Google Scholar
PubMed
Hypoxia is closely associated with physiological and pathological conditions in the human body, and the myometrium is affected by hypoxic stress during pregnancy and delivery. Autophagy is a catabolic pathway involved in the regulation of apoptosis, proliferation and migration of a variety of cells, which can be activated under hypoxia. However, the mechanism and function of autophagy in uterine smooth muscle cells remained unclear. The aim of this study was to investigate the changes of autophagy in pregnant uterine smooth muscle cells (pUSMCs) under hypoxia and the effect of autophagy on myometrial cells proliferation during pregnancy. In this study, primary uterine smooth muscle cells were isolated from mice in late pregnancy and cultured under normoxic and hypoxic conditions respectively. Western blotting and immunofluorescence were used to detect the expression levels of autophagy-related proteins LC3B, P62, mTOR and p-mTOR under different culture conditions. Cell proliferation was assessed by CCK-8 assay. In addition, 3-Methyladenine (3-MA) was used to inhibit autophagy in hypoxia-treated pUSMCs and MHY1485 was used to activate mTOR. Studies have confirmed that under hypoxic conditions, autophagy is enhanced and cell proliferative viability is reduced in pUSMCs. Autophagy inhibitor 3-MA restored cell proliferation inhibited by hypoxia. Furthermore, hypoxia in pUSMCs led to a downregulation of p-mTOR/mTOR levels. The mTOR activator MHY1485 inhibited autophagy by preventing the binding of autophagosomes to lysosomes and reversed the hypoxia-induced inhibition of cell proliferation. Collectively, our results indicate that hypoxia upregulates autophagy through the mTOR pathway in pUSMCs, thereby inhibiting cell proliferation during pregnancy.
Search for other papers by Xu Tengteng in
Google Scholar
PubMed
Search for other papers by Min Gao in
Google Scholar
PubMed
Search for other papers by Ling Zhang in
Google Scholar
PubMed
Search for other papers by Tianqi Cao in
Google Scholar
PubMed
Search for other papers by Yanling Qiu in
Google Scholar
PubMed
Search for other papers by Simiao Liu in
Google Scholar
PubMed
Search for other papers by Wenlian Wu in
Google Scholar
PubMed
Search for other papers by Yitong Zhou in
Google Scholar
PubMed
Search for other papers by Haiying Liu in
Google Scholar
PubMed
Search for other papers by Rui Zhang in
Google Scholar
PubMed
Search for other papers by Xiaohong Ruan in
Google Scholar
PubMed
Search for other papers by Junjiu Huang in
Google Scholar
PubMed
Biallelic variants in the NSUN2 gene cause a rare intellectual disability and female infertility in humans. However, the function and mechanism of NSUN2 during mouse oocyte meiotic maturation and early embryonic development are unknown. Here, we show that NSUN2 is important for mouse oocyte meiotic maturation and early embryonic development. Specifically, NSUN2 is required for ovarian development and oocyte meiosis, and deletion of Nsun2 reduces oocyte maturation and increases the rates of misaligned chromosomes and aberrant spindles. In addition, Nsun2 deficiency results in a low blastocyst rate and impaired blastocyst quality. Strikingly, loss of Nsun2 leads to approximately 35% of embryos being blocked at the 2-cell stage, and Nsun2 knockdown impairs zygotic genome activation at the 2-cell stage. Taken together, these findings suggest that NSUN2 plays a critical role in mouse oocyte meiotic maturation and early embryonic development, and provide key resources for elucidating female infertility with NSUN2 mutations.