Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Yan Qin x
Clear All Modify Search
Free access

Jing Cong, Hong-Lu Diao, Yue-Chao Zhao, Hua Ni, Yun-Qin Yan and Zeng-Ming Yang

It has been shown that both prostaglandin I2 (PGI2) and PGE2 are essential for mouse implantation, whereas only PGE2 is required for hamster implantation. To date, the expression and regulation of cyclooxygenase (COX) and prostaglandin E synthase (PGES), which are responsible for PGE2 production, have not been reported in the rat. The aim of this study was to examine the expression pattern and regulation of COX-1, COX-2, membrane-associated PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in rat uterus during early pregnancy and pseudopregnancy, and under delayed implantation. At implantation site on day 6 of pregnancy, COX-1 immunostaining was highly visible in the luminal epithelium, and COX-2 immunostaining was clearly observed in the subluminal stroma. Both mPGES-1 mRNA and protein were only observed in the subluminal stroma surrounding the implanting blastocyst at the implantation site on day 6 of pregancy , but were not seen in the inter-implantation site on day 6 of pregnancy and on day 6 of pseudopregnancy. Our data suggest that the presence of an active blastocyst is required for mPGES-1 expression at the implantation site. When pregnant rats on day 5 were treated with nimesulide for 24 h, mPGES-1 protein expression was completely inhibited. cPGES immunostaining was clearly observed in the luminal epithelium and subluminal stromal cells immediately surrounding the implanting blastocyst on day 6 of pregnancy. mPGES-2 immunostaining was clearly seen in the luminal epithelium at the implantation site. Additionally, immunostaining for prostaglandin I synthase (PGIS) was also strongly detected at the implantation site. In conclusion, our results indicate that PGE2 and PGI2 should have a very important role in rat implantation.

Open access

Hai-Yan Hou, Xi Wang, Qi Yu, Hong-Yi Li, Shao-Jie Li, Rui-Yi Tang, Zai-Xin Guo, Ya-Qiong Chen, Chun-Xiu Hu, Zhi-Juan Yang, Wen-ke Zhang and Yan Qin

Decline in successful conception decreases more rapidly after 38 years of age owing to follicular depletion and decreased oocyte quality. However, limited information is available regarding the underlying mechanism and the useful treatment. This study aimed to evaluate the effects of growth hormone supplementation on oocyte maturation in vivo in aged and young mice and to determine its effect on mitochondrial function. The influence of three different doses of recombinant human growth hormone (rhGH) (0.4, 0.8 and 1.6 mg/kg/day) for 8 weeks before ovarian stimulation was analyzed. Superovulated oocytes were released from the oviduct of 12-week-old and 40-week-old female C57BL/6J mice 14–16 h after administration of human chorionic gonadotropin. Ovarian follicle and morphological analysis and oocyte maturation parameters were then evaluated. This study is the first, to our knowledge, to report that medium- and high-dose rhGH significantly increases antral follicles in aged mice but anti-Müllerian hormone (AMH) levels. Furthermore, derived oocytes, MII-stage oocyte rate, ATP levels, mitochondrial membrane potential and frequencies of homogeneous mitochondrial distribution increased. In contrast, in both aged and young mice, the mtDNA copy numbers per oocyte were similar before rhGH administration, and upon saline administration, they did not differ significantly. We conclude that medium-dose rhGH supplementation before standard ovarian stimulation regimens improves oocyte quality in aged mice, probably by enhancing mitochondrial functionality.