Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Yan Qin x
Clear All Modify Search
Free access

Jing Cong, Hong-Lu Diao, Yue-Chao Zhao, Hua Ni, Yun-Qin Yan and Zeng-Ming Yang

It has been shown that both prostaglandin I2 (PGI2) and PGE2 are essential for mouse implantation, whereas only PGE2 is required for hamster implantation. To date, the expression and regulation of cyclooxygenase (COX) and prostaglandin E synthase (PGES), which are responsible for PGE2 production, have not been reported in the rat. The aim of this study was to examine the expression pattern and regulation of COX-1, COX-2, membrane-associated PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in rat uterus during early pregnancy and pseudopregnancy, and under delayed implantation. At implantation site on day 6 of pregnancy, COX-1 immunostaining was highly visible in the luminal epithelium, and COX-2 immunostaining was clearly observed in the subluminal stroma. Both mPGES-1 mRNA and protein were only observed in the subluminal stroma surrounding the implanting blastocyst at the implantation site on day 6 of pregancy , but were not seen in the inter-implantation site on day 6 of pregnancy and on day 6 of pseudopregnancy. Our data suggest that the presence of an active blastocyst is required for mPGES-1 expression at the implantation site. When pregnant rats on day 5 were treated with nimesulide for 24 h, mPGES-1 protein expression was completely inhibited. cPGES immunostaining was clearly observed in the luminal epithelium and subluminal stromal cells immediately surrounding the implanting blastocyst on day 6 of pregnancy. mPGES-2 immunostaining was clearly seen in the luminal epithelium at the implantation site. Additionally, immunostaining for prostaglandin I synthase (PGIS) was also strongly detected at the implantation site. In conclusion, our results indicate that PGE2 and PGI2 should have a very important role in rat implantation.

Restricted access

Mo Hui Qin, Tian Fu Ju, Ma Xiao Ling, Zhang Yu Chen, Zhang Cheng Xi, Weihong Zeng, Zhang Yan and Yi Lin

Protein disulfide isomerase 3 (PDIA3) is a chaperone protein that modulates the folding of newly synthesized glycoproteins, has isomerase and redox activity, and has been implicated in the pathogenesis of many diseases. However, the role of PDIA3 in pregnancy-associated diseases remains largely unknown. Our present study reveals a key role for PDIA3 in the biology of placental trophoblasts from women with preeclampsia (PE). Immunohistochemistry and western blot analysis revealed that PDIA3 expression was decreased in villous trophoblasts from women with PE compared with normotensive pregnancies. Further, using a Cell Counting Kit-8 assay, flow cytometry, and 5-ethynyl-2'-deoxyuridine (EdU) staining, we found that siRNA-mediated PDIA3 knockdown significantly promoted apoptosis and inhibited proliferation in the HTR8/SVneo cell line, while overexpression of PDIA3 reversed these effects. Furthermore, RNA sequencing and western blot analysis demonstrated that knockdown of PDIA3 inhibited MDM2 protein expression in HTR8 cells, concurrent with marked elevation of p53 and p21 expression. Conversely, overexpression of PDIA3 had the opposite effects. Immunohistochemistry and western blot further revealed that MDM2 protein expression was down-regulated and p21 was increased in trophoblasts of women with PE compared to women with normotensive pregnancies. Our findings indicate that PDIA3 expression is decreased in the trophoblasts of women with PE, and decreased PDIA3 induces trophoblast apoptosis and represses trophoblast proliferation through regulating the MDM2/p53/p21 pathway.

Restricted access

Xiaoli Qin, Yan Chen, Jiangjing Yuan, Xiaorui Liu, Weihong Zeng and Yi Lin

Abnormal growth and migration of trophoblast cells is one of the main causes of spontaneous abortion. Eukaryotic translation initiation factor 5A (eIF5A) plays an important role in trophoblast cell growth and migration; however, its underlying mechanism remains largely unknown. Here, we first confirmed that eIF5A knockdown reduced human chorionic trophoblast HTR8 cells viability, proliferation, and migration. Next, we sought to systematically identify the genes regulated by eIF5A and observed changes in the transcriptome profile of eIF5A-knockdown HTR8 cells by RNA-seq analysis. Especially, we found that inhibition of eIF5A reduced both the mRNA and protein levels of methyltransferase-like protein 14 (METTL14). Furthermore, inhibition of METTL14 expression resulted in the reduction of viability, proliferation, and migration of HTR8 cells. In addition, we showed that overexpression of METTL14 rescued the effects of eIF5A knockdown in HTR8 cells. Finally, we revealed that eIF5A and METTL14 expression was decreased in spontaneous abortion samples compared to that in elective-induced abortion samples. Collectively, our study demonstrated that eIF5A plays a crucial role in HTR8 cells via modulation of METTL14 expression and may serve as a novel potential target for spontaneous abortion diagnosis and treatment.

Open access

Hai-Yan Hou, Xi Wang, Qi Yu, Hong-Yi Li, Shao-Jie Li, Rui-Yi Tang, Zai-Xin Guo, Ya-Qiong Chen, Chun-Xiu Hu, Zhi-Juan Yang, Wen-ke Zhang and Yan Qin

Decline in successful conception decreases more rapidly after 38 years of age owing to follicular depletion and decreased oocyte quality. However, limited information is available regarding the underlying mechanism and the useful treatment. This study aimed to evaluate the effects of growth hormone supplementation on oocyte maturation in vivo in aged and young mice and to determine its effect on mitochondrial function. The influence of three different doses of recombinant human growth hormone (rhGH) (0.4, 0.8 and 1.6 mg/kg/day) for 8 weeks before ovarian stimulation was analyzed. Superovulated oocytes were released from the oviduct of 12-week-old and 40-week-old female C57BL/6J mice 14–16 h after administration of human chorionic gonadotropin. Ovarian follicle and morphological analysis and oocyte maturation parameters were then evaluated. This study is the first, to our knowledge, to report that medium- and high-dose rhGH significantly increases antral follicles in aged mice but anti-Müllerian hormone (AMH) levels. Furthermore, derived oocytes, MII-stage oocyte rate, ATP levels, mitochondrial membrane potential and frequencies of homogeneous mitochondrial distribution increased. In contrast, in both aged and young mice, the mtDNA copy numbers per oocyte were similar before rhGH administration, and upon saline administration, they did not differ significantly. We conclude that medium-dose rhGH supplementation before standard ovarian stimulation regimens improves oocyte quality in aged mice, probably by enhancing mitochondrial functionality.