Search Results

You are looking at 1 - 10 of 12 items for

  • Author: Yan Shi x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Shuai Lin, Yu-Yuan Zhu, Wei Hu, Yan Yang, Jia-Mei Luo, Shi-Jun Hu, and Zeng-Ming Yang

Decidualization is required for the successful establishment of pregnancy in rodents and primates. Fatty acid desaturase 3 (Fads3) belongs to the fatty acid desaturase family, which is a crucial enzyme for highly unsaturated fatty acid biosynthesis. However, the expression, regulation and function of Fads3 during early pregnancy in mice are still unknown. In this study, we examined Fads3 expression, regulation and function during mouse decidualization. The expression of Fads3 is detected in the subluminal stromal cells at implantation site on day 5 of pregnancy, but not at inter-implantation site and in day 5 pseudopregnant uteri. Compared to delayed implantation, Fads3 is strongly expressed after delayed implantation is activated by estrogen treatment. From days 6 to 8, Fads3 mRNA signals are significantly detected in the decidua. In ovariectomized mice, estrogen significantly stimulates Fads3 expression. However, estrogen has no effect on Fads3 expression in ovariectomized ERα-deficient mice, suggesting that estrogen regulation on Fads3 expression is ERα dependent. When ovariectomized mice were treated with progesterone, Fads3 expression is significantly increased by progesterone. Progesterone stimulation on Fads3 expression is also detected in cultured stromal cells, which is abrogated by RU486 treatment. These data indicate that progesterone upregulation on Fads3 expression is progesterone receptor-dependent. Fads3 knockdown by siRNA reduces in vitro decidualization of mouse stromal cells. Taken together, Fads3 may play an important role during mouse decidualization.

Open access

Jie Mei, Yuan Yan, Shi-Yuan Li, Wen-Jie Zhou, Qun Zhang, Ming-Qing Li, and Hai-Xiang Sun

Decidualization renders the endometrium transiently receptive to an implanting blastocyst although the underlying mechanisms remain incompletely understood. The aim of this study was to determine the role of chemokine CXCL16 and its receptor CXCR6 in the decidualization during pregnancy. Here, the expression of CXCL16 was investigated in endometrial tissues, decidua and placenta in this study. Compared with endometrial tissue, protein expression of CXCL16 was significantly higher in tissues from the fertile control samples, especially in villus. Meanwhile, the primary trophoblast cells and decidual stromal cells (DSCs) secreted more CXCL16 and expressed higher CXCR6 compared to endometrial stromal cells (ESCs) in vitro. Stimulation with the inducer of decidualization (8-bromoadenosine 3′,5′-cyclic with medroxyprogesterone acetate, 8-Br-cAMP plus MPA) significantly upregulated the expression of CXCL16 and CXCR6 in ESCs in vitro. After treatment with exogenous recombinant human CXCL16 (rhCXCL16) or trophoblast-secreted CXLC16, decidualised ESCs showed a significant decidual response, mainly characterised by increased prolactin (PRL) secretion. Simultaneously, PI3K/PDK1/AKT/Cyclin D1 pathway in decidualised ESCs were activated by rhCXCL16, and AKT inhibitor GS 690693 abolished the PRL secretion of ESCs that was triggered by rhCXCL16. Finally, the impaired CXCL16/CXCR6 expression could be observed at the maternal–foetal interface from patients who have experienced spontaneous abortion. This study suggests that the CXCL16/CXCR6 axis contributes to the progression of ESC decidualization by activating PI3K/PDK1/AKT/Cyclin D1 pathway. It unveils a new paradigm at the maternal–foetal interface in which CXCL16 is an initiator for the molecular crosstalk that enhances decidualization of ESCs.

Free access

Yan Xu, Miao Liu, Yi-hua Gu, Xiao-feng Jia, Yong-Mei Chen, Michelle Santos, Ai-Zhen Wu, Xiao-dong Zhang, Hui-Juan Shi, and Ching-Ling C Chen

With tetraspanning topology, members of the membrane-spanning four-domain subfamily A (MS4A) may facilitate signaling or ion channel functions in many tissues. In this study, we report the cloning of a full-length cDNA from rat testis, designated Ms4a14 (Sp3111), which encodes the MS4A protein with 1139 amino acid residues. In situ hybridization and immunohistochemical analyses indicate that Ms4a14 is predominantly expressed from round spermatids to spermatozoa at specific stages in the rat testis at both the mRNA and protein level. Immunofluorescence analysis revealed that MS4A14 (SP3111) is located in the acrosome and the midpiece of the flagellum in mature sperm. Previously, we explored and reported the involvement of MS4A14 in reproductive functions, using antibody blockage during IVF and a transgenic RNA interference method in a mouse model. Our results suggested that MS4A14 is involved in fertilization and zygote division. As MS4A14 protein exists in mammals, such as humans, cows, dogs, and rodents, MS4A14 may play a ubiquitous role in mammalian reproduction.

Open access

Yan Shi, Bingjie Hu, Zizengchen Wang, Xiaotong Wu, Lei Luo, Shuang Li, Shaohua Wang, Kun Zhang, and Huanan Wang

In brief

The lineage specification during early embryonic development in cattle remains largely elusive. The present study determines the effects of trophectoderm-associated factors GATA3 and CDX2 on lineage specification during bovine early embryonic development.

Abstract

Current understandings of the initiation of the trophectoderm (TE) program during mammalian embryonic development lack evidence of how TE-associated factors such as GATA3 and CDX2 participate in bovine lineage specification. In this study, we describe the effects of TE-associated factors on the expression of lineage specification marker genes such as SOX2, OCT4, NANOG, GATA6, and SOX17, by using cytosine base editor system. We successfully knockout GATA3 or CDX2 in bovine embryos with a robust efficiency. However, GATA3 or CDX2 deletion does not affect the developmental potential of embryos to reach the blastocyst stage. Interestingly, GATA3 deletion downregulates the NANOG expression in bovine blastocysts. Further analysis of the mosaic embryos shows that GATA3 is required for NANOG in the TE of bovine blastocysts. Single blastocyst RNA-seq analysis reveals that GATA3 deletion disrupts the transcriptome in bovine blastocysts. Altogether, we propose that GATA3 plays an important role in maintaining TE lineage program in bovine embryos and the functional role of GATA3 is species-specific.

Free access

Jia-Jun Yu, Hui-Ting Sun, Zhong-Fang Zhang, Ru-Xia Shi, Li-Bing Liu, Wen-Qing Shang, Chun-Yan Wei, Kai-Kai Chang, Jun Shao, Ming-Yan Wang, and Ming-Qing Li

Endometriosis (EMS) is associated with an abnormal immune response to endometrial cells, which can facilitate the implantation and proliferation of ectopic endometrial tissues. It has been reported that human endometrial stromal cells (ESCs) express interleukin (IL)15. The aim of our study was to elucidate whether or not IL15 regulates the cross talk between ESCs and natural killer (NK) cells in the endometriotic milieu and, if so, how this regulation occurs. The ESC behaviors in vitro were verified by Cell Counting Kit-8 (CCK-8), Annexin/PI, and Matrigel invasion assays, respectively. To imitate the local immune microenvironment, the co-culture system between ESCs and NK cells was constructed. The effect of IL15 on NK cells in the co-culture unit was investigated by flow cytometry (FCM). In this study, we found that ectopic endometrium from patients with EMS highly expressed IL15. Rapamycin, an autophagy inducer, decreased the level of IL15 receptors (i.e. IL15Rα and IL2Rβ). IL15 inhibits apoptosis and promotes the invasiveness, viability, and proliferation of ESCs. Meanwhile, a co-culture with ESCs led to a decrease in CD16 on NK cells. In the co-culture system, IL15 treatment downregulated the levels of Granzyme B and IFN-γ in CD16+NK cells, NKG2D in CD56dimCD16-NK cells, and NKP44 in CD56brightCD16-NK cells. On the one hand, these results indicated that IL15 derived from ESCs directly stimulates the growth and invasion of ESCs. On the other hand, IL15 may help the immune escape of ESCs by suppressing the cytotoxic activity of NK cells in the ectopic milieu, thereby facilitating the progression of EMS.

Free access

Nan Meng, Xinyue Wang, Yan Shi, Yanyan Mao, Qian Yang, Baohui Ju, Qianxi Zhu, Tingting Zhang, Yan Gu, and Xuan Zhang

Decidualization is essential for the successful establishment of pregnancy, and the dysregulated decidualization may lead to early pregnancy loss. It was previously reported by us that miR-3074-5p could promote apoptosis but inhibit invasion of human extravillous trophoblast (EVT) cells in vitro, and the expression level of miR-3074-5p in villus tissues of recurrent miscarriage (RM) patients was significantly increased. The aim of this study was to preliminarily explore the role of miR-3074-5p played in the decidualization of human endometrial stromal cells (ESCs). It was found that the decidual expression level of miR-3074-5p in RM patients was remarkably higher than that in the control group. The overexpression of miR-3074-5p in the immortalized human ESC line, T-HESCs, showed suppressive effects not only on the cell proliferation, as well as the intracellular expression levels of cyclin B1 (CCNB1), CCND1 and CCNE1 but also on the in vitro-induced decidualization. CLN8 mRNA, encoding an endoplasmic reticulum (ER)-associated membrane protein, was validated to be directly targeted by miR-3074-5p. And, the expression level of CLN8 was continuously increased along with the decidualization process, whereas down-regulated CLN8 expression could inhibit the decidualization of T-HESCs in vitro. Furthermore, contrary to the increased expression level of miR-3074-5p, a significantly decreased CLN8 expression was observed in decidual tissues of RM patients. Collectively, these data suggested that an increased miR-3074-5p expression in ESCs might cause early pregnancy failure by disturbing decidualization of ESCs via the miR-3074-5p/CLN8 pathway, providing a potential diagnostic and therapeutic target for RM.

Free access

Jia-Wei Shi, Hui-Li Yang, Zhen-Zhen Lai, Hui-Hui Shen, Xue-Yun Qin, Xue-Min Qiu, Yan Wang, Jiang-Nan Wu, and Ming-Qing Li

The survival and development of a semi-allogeneic fetus during pregnancy require the involvement of decidual stromal cells (DSCs), a series of cytokines and immune cells. Insulin-like growth factor 1 (IGF1) is a low molecular weight peptide hormone with similar metabolic activity and structural characteristics of proinsulin, which exerts its biological effects by binding with its receptor. Emerging evidence has shown that IGF1 is expressed at the maternal–fetal interface, but its special role in establishment and maintenance of pregnancy is largely unknown. Here, we found that the expression of IGF1 in the decidua was significantly higher than that in the endometrium. Additionally, decidua from women with normal pregnancy had high levels of IGF1 compared with that from women with unexplained recurrent spontaneous miscarriage. Estrogen and progesterone led to the increase of IGF1 in DSCs through upregulating the expression of WISP2. Recombinant IGF1 or DSCs-derived IGF1 increased the survival, reduced the apoptosis of DSCs, and downregulated the cytotoxicity of decidual NK cells (dNK) through interaction with IGF1R. These data suggest that estrogen and progesterone stimulate the growth of DSCs and impair the cytotoxicity of dNK possibly by the WISP2/IGF1 signaling pathway.

Free access

Hui-Hui Shen, Cheng-Jie Wang, Xin-Yan Zhang, Yan-Ran Sheng, Shao-Liang Yang, Zi-Meng Zheng, Jia-Lu Shi, Xue-Min Qiu, Feng Xie, and Ming-Qing Li

Heme oxygenase 1 (HO-1, encoded by the HMOX1 gene) is the rate-limiting enzyme that catalyzes heme degradation, and it has been reported to exert antioxidative effects. Recently, decidualization has been reported to confer resistance to environmental stress signals, protecting against oxidative stress. However, the effects and regulatory mechanism of HO-1 in decidual stromal cells (DSCs) during early pregnancy remain unknown. Here, we verified that the levels of HO-1 and heme in DSCs are increased compared with those in endometrial stromal cells. Additionally, the upregulation of HIF1A expression led to increased HMOX1 expression in DSCs possibly via nuclear factor erythroid 2-related factor (encoded by the NFE2L2 gene). However, addition of the competitive HO-1 inhibitor zinc protoporphyrin IX resulted in an increase in HIF1A expression. Hydrogen peroxide (H2O2) induced the production of reactive oxygen species (ROS), decreased the cell viability of DSCs in vitro, and upregulated the level of heme. As an HO-1 inducer, cobalt protoporphyrin IX decreased ROS production and significantly reversed the inhibitory effect of H2O2 on cell viability. More importantly, patients with unexplained spontaneous abortion had low levels of HO-1 that were insufficient to protect against oxidative stress. This study suggests that the upregulation of HO-1 expression via HIF1A protects DSCs against excessive heme-mediated oxidative stress. Furthermore, the excessive oxidative stress injury and impaired viability of DSCs associated with decreased HO-1 expression should be associated with the occurrence and/or development of spontaneous abortion.

Free access

Li-Ying Yan, Jun-Cheng Huang, Zi-Yu Zhu, Zi-Li Lei, Li-Hong Shi, Chang-Long Nan, Zhen-Jun Zhao, Ying-Chun OuYang, Xiang-Fen Song, Qing-Yuan Sun, and Da-Yuan Chen

The assembly of microtubules and the distribution of NuMA were analyzed in rabbit oocytes and early cloned embryos. α-Tubulin was localized around the periphery of the germinal vesicle (GV). After germinal vesicle breakdown (GVBD), multi-arrayed microtubules were found tightly associated with the condensed chromosomes and assembled into spindles. After the enucleated oocyte was fused with a fibroblast, microtubules were observed around the introduced nucleus in most reconstructed embryos and formed a transient spindle 2–4 h post-fusion (hpf). A mass of microtubules surrounded the swollen pseudo-pronucleus 5 hpf and a normal spindle was formed 13 hpf in cloned embryos. NuMAwas detected in the nucleus in germinal vesicle-stage oocytes, and it was concentrated at the spindle poles in both meiotic and mitotic metaphase. In both donor cell nucleus and enucleated oocyte cytoplasm, NuMA was not detected, while NuMA reappeared in pseudo-pronucleus as reconstructed embryo development proceeded. However, no evident NuMA staining was observed in the poles of transient spindle and first mitotic spindle in nuclear transfer eggs. These results indicate that NuMA localization and its spindle pole tethering function are different during rabbit oocyte meiosis and cloned embryo mitosis.

Free access

Xue-Min Qiu, Zhen-Zhen Lai, Si-Yao Ha, Hui-Li Yang, Li-Bing Liu, Yan Wang, Jia-Wei Shi, Lu-Yu Ruan, Jiang-Feng Ye, Jiang-Nan Wu, Qiang Fu, Xiao-Fang Yi, Kai-Kai Chang, and Ming-Qing Li

Immune cells and cytokines have important roles in the pathogenesis of endometriosis. However, the production and role of cytokines of T helper type 1 (Th1) and Th2 cells in the progress of endometriosis have remained to be fully elucidated. The present study reported that the interferon (IFN)-γ levels and the percentage of IFN-γ+CD4+ cells were significantly increased in the peritoneal fluid (PF) at the early stage and maintained at a higher level at the advanced stage of endometriosis; furthermore, interleukin (IL)-10 and IL-10+CD4+ cells were elevated in the advanced stage of endometriosis. In addition, IL-2 levels in the PF at the advanced stage of endometriosis were elevated and negatively associated with IFN-γ expression. In a co-culture system of ectopic endometrial stromal cells (ESCs) and macrophages, elevated IL-2 was observed, and treatment with cytokines IL-2 and transforming growth factor-β led to upregulation of the ratio of IL-2+ macrophages. IL-27-overexpressing ESCs and macrophages were able to induce a higher ratio of IL-10+CD4+ T cells. Blocking of IL-2 with anti-IL-2 neutralizing antibody led to upregulation of the ratio of IFN-γ+CD4+ T cells in the co-culture system in vitro. Recombinant human IL-10 and IFN-γ promoted the viability, invasiveness and transcription levels of matrix metalloproteinase (MMP)2, MMP9, and prostaglandin-endoperoxide synthase 2 of ESCs, particularly combined treatment with IL-10 and IFN-γ. These results suggest that IL-2 and IL-27 synergistically promote the growth and invasion of ESCs by modulating the balance of IFN-γ and IL-10 and contribute to the progress of endometriosis.