Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Yi Ge x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Yi-Fan Gu, Chang-Fu Lu, Ge Lin, and Guang-Xiu Lu

The cryopreservation of human embryos is thought to induce alteration in the glycoprotein matrix and lead to zona change. However, this assumption has been full of controversies till now. The objective of this study was to evaluate the effect of cryopreservation on zona pellucida of human embryos. Fresh (n=106, from 40 patients) and frozen–thawed embryos (n=123, from 40 patients) were obtained from consenting patients who received conventional IVF and ICSI treatment. The birefringence of zona pellucida in human fresh and frozen–thawed embryos was imaged and quantitatively analyzed using polarized light microscopy before embryo transfer. There was no significant difference in retardance and thickness of the zona pellucida multilaminar structure between the two groups. Pregnancy and implantation rates of transferred fresh and frozen–thawed embryos were also compared. No significant difference was found in the rates of clinical pregnancy (47.5 vs 37.5%) and implantation (24.5 vs 23.2%) between the two groups. This study suggests that there is no significant change in the zona pellucida birefringence of human embryos before and after cryopreservation.

Restricted access

Zoe Tasma, Weilin Hou, Tanvi Damani, Kathleen Seddon, Matthew Kang, Yi Ge, David Hanlon, Fiona Hollinshead, Colin L Hisey, and Lawrence W Chamley

In brief

Mesenchymal stromal cell (MSC)-derived extracellular vesicles (EVs) have shown promise as off-the-shelf therapeutics; however, producing them in sufficient quantities can be challenging. In this study, MSCs were isolated from preimplantation equine embryos and used to produce EVs in two commercially available bioreactor designs.

Abstract

Mesenchymal stromal cells (MSC) have recently been explored for their potential use as therapeutics in human and veterinary medicine applications, such as the treatment of endometrial inflammation and infertility. Allogeneic MSC-derived extracellular vesicles (EVs) may also provide therapeutic benefits with advantage of being an ‘off-the-shelf’ solution, provided they can be produced in large enough quantities, without contamination from bovine EVs contained in fetal bovine serum that is a common component of cell culture media. Toward this aim, we demonstrated the successful isolation and characterization of equine MSCs from preimplantation embryos. We also demonstrate that many of these lines can be propagated long-term in culture while retaining their differentiation potential and conducted a head-to-head comparison of two bioreactor systems for scalable EV production including in serum-free conditions. Based on our findings, the CELLine AD 1000 flasks enabled higher cell density cultures and significantly more EV production than the FiberCell system or conventional culture flasks. These findings will enable future isolation of equine MSCs and the scalable culture of their EVs for a wide range of applications in this rapidly growing field.