Search Results

You are looking at 1 - 10 of 16 items for

  • Author: Yu Chen x
Clear All Modify Search
Restricted access

Yu Chen, Hongshi Yu, Andrew J Pask, Asao Fujiyama, Yutaka Suzuki, Sumio Sugano, Geoff Shaw and Marilyn B Renfree

The development of the mammalian phallus involves hormone-dependent mesenchymal–epithelial signalling mechanisms that contribute to urethral closure and regulation of phallus elongation and growth. In marsupials, most differentiation and growth of the phallus occurs post-natally, making them amenable to direct hormone treatment. Expression of IGFs, FGFs, EFNB2, MAFB, DLX5 and AP-1 mRNAs in the phallus at day 50 post-partum (pp) were altered after treatment of tammar wallaby young from day 20 to 40 pp with androgen, oestrogen or after castration at day 25 pp. However, the most interesting changes occurred in the IGF pathway genes. Androgen treatment upregulated IGF1 in female phalluses and oestrogen treatment upregulated IGF1 in male phalluses, but it was downregulated by castration. IGFBP3 was higher in female phalluses and downregulated by androgen. IGF1 expression was higher in all untreated male than in female phalluses from day 50 to 150 pp, but IGFBP3 had the reverse pattern. At day 90 pp, when urethral closure in males is progressing and male phallus growth is accelerating. IGF1 and PCNA protein were only detected in the male urorectal septum, suggesting for the first time that closure and elongation may involve IGF1 activation of cell proliferation specifically in male phalluses. These effects of sex steroids on gene expression and on the IGF1 signalling pathway in particular, suggest that the developing phallus may be especially susceptible to perturbation by exogenous hormones.

Restricted access

Liuhong Yang, Lei Chen, Xiaosheng Lu, Anni Tan, Yao Chen, Yalan Li, Xuemei Peng, Shaochun Yuan, Dongqing Cai and Yanhong Yu

Peri-ovarian adipose tissue (POAT) is a kind of intra-abdominal white adipose tissue that is present surrounding the ovaries in rodents. Recent studies demonstrated that POAT-deficient mice displayed a phenotype of delayed antral follicular development, for which decreases in serum estrogen, serum FSH and FSHR levels were responsible. However, folliculogenesis is regulated by endocrine signals and also modulated by a number of locally produced intraovarian factors whose acts are both autocrine and paracrine. Here, we used a model of surgical removal of POAT unilaterally and contralateral ovaries as controls, as both were under the same endocrine control, to assess the paracrine effect of the POAT on folliculogenesis. Surgical removal of unilateral POAT resulted in delayed antral follicular development and the increased number of atretic follicles, accompanied by decreased levels of intraovarian adipokines and growth factors, lipid accumulation and steroidogenic enzyme expression. POAT-deficient ovaries displayed compensatory increased expressions of intraovarian genes, such as Vegf and Adpn for angiogenesis, Acc, Fasn, and Gapdh involved in lipogenesis and Fshr in response to FSH stimulation. Furthermore, we demonstrated that removal of POAT promoted follicular apoptosis, caused retention of cytoplasmic YAP and inhibited PTEN-AKT-mTOR activation. These alterations were observed only in the POAT-deficient ovaries but not in the contralateral ovaries (with POAT), which suggests that a paracrine interaction between POAT and ovaries is important for normal folliculogenesis.

Free access

Zhen-Yu Zheng, Qing-Zhang Li, Da-Yuan Chen, Heide Schatten and Qing-Yuan Sun

The protein kinase Cs (PKCs) are a family of Ser/Thr protein kinases categorized into three subfamilies: classical, novel, and atypical. The phosphorylation of PKC in germ cells is not well defined. In this study, we described the subcellular localization of phopho-PKC in the process of mouse oocyte maturation, fertilization, and early embryonic mitosis. Confocal microscopy revealed that phospho-PKC (pan) was distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, phospho-PKC was localized in the vicinity of the condensed chromosomes, distributed in the whole meiotic spindle, and concentrated at the spindle poles. After metaphase I, phospho-PKC was translocated gradually to the spindle mid-zone during emission of the first polar body. After sperm penetration and electrical activation, the distribution of phospho-PKC was moved from the spindle poles to the spindle mid-zone. After the extrusion of the second polar body (PB2) phospho-PKC was localized in the area between the oocyte and the PB2. In fertilized eggs, phospho-PKC was concentrated in the pronuclei except for the nucleolus. Phospho-PKC was dispersed after pronuclear envelope breakdown, but distributed on the entire spindle at mitotic metaphase. The results suggest that PKC activation may play important roles in regulating spindle organization and stabilization, polar-body extrusion, and nuclear activity during mouse oocyte meiosis, fertilization, and early embryonic mitosis.

Restricted access

Yu-Qian Wang, Aalia Batool, Su-Ren Chen and Yi-Xun Liu

Reduced contractility of the testicular peritubular myoid (PTM) cells may contribute to human male subfertility or infertility. Transcription factor GATA4 in Sertoli and Leydig cells is essential for murine spermatogenesis, but limited attention has been paid to the potential role of GATA4 in PTM cells. In primary cultures of mouse PTM cells, siRNA knockdown of GATA4 increased the contractile activity, while GATA4 overexpression significantly attenuated the contractility of PTM cells using a collagen gel contraction assay. Using RNA sequencing and qRT-PCR, we identified a set of genes that exhibited opposite expressional alternation between Gata4 siRNA vs nontargeting siRNA-treated PTM cells and Gata4 adenovirus vs control adenovirus-treated PTM cells. Notably, ion channels, smooth muscle function, cytokines and chemokines, cytoskeleton, adhesion and extracellular matrix were the top four enriched pathways, as revealed by cluster analysis. Natriuretic peptide type B (NPPB) content was significantly upregulated by GATA4 overexpression in both PTM cells and their culture supernatant. More importantly, the addition of 100 μM NPPB could abolish the promoting effect of Gata4 silencing on PTM cell contraction. Taken together, we suggest that the inhibitory action of GATA4 on PTM cell contraction is mediated at least partly by regulating genes belonging to smooth muscle contraction pathway (e.g. Nppb).

Free access

Li-Jun Huo, Cheng-Guang Liang, Ling-Zhu Yu, Zhi-Sheng Zhong, Zeng-Ming Yang, Heng-Yu Fan, Da-Yuan Chen and Qing-Yuan Sun

The present study investigated the subcellular localization of inducible nitric oxide synthase (iNOS) during mouse oocyte meiotic maturation and fertilization using confocal microscopy, and further studied the roles of iNOS-derived NO in oocyte maturation by using an iNOS-specific inhibitor aminoguanidine (AG) and iNOS antibody microinjection. In germinal vesicle-stage oocytes, iNOS immunoreactivity was mainly localized in the germinal vesicle. Shortly after germinal vesicle breakdown, the iNOS immunoreactivity accumulated around the condensed chromosomes. At metaphase I and metaphase II, with the organization of chromosomes to the equatorial plate, iNOS immunoreactivity was concentrated around the aligned chromosomes, putatively the position of the metaphase spindle. The accumulation of iNOS immunoreactivity could not be detected at anaphase I and anaphase II. However, at telophase I and telophase II, the staining of iNOS was concentrated in the region between the separating chromosomes/chromatids. Furthermore, the staining of iNOS also accumulated in the male and female pronuclei in fertilized eggs. Germinal vesicle breakdown and the first polar body emission of the oocytes were significantly blocked by the iNOS-specific inhibitor AG in a dose-dependent manner. The germinal vesicle breakdown in oocytes injected with iNOS antibody was also inhibited. We found that the phosphorylation of mitogen-activated protein kinase in oocytes after germinal vesicle breakdown was inhibited by AG treatment. The control oocytes extruded a normal first polar body, while the AG-treated oocytes exhibited an elongated protrusion or no elongated protrusion. The results of confocal microscopy showed that the AG-treated oocytes were arrested at anaphase I–telophase I. Our results suggest that the iNOS-derived NO pathway plays important roles in mouse oocyte meiotic maturation, especially in germinal vesicle breakdown and the anaphase–telophase transition.

Free access

Jianfeng Yao, Lixia Geng, Rongfu Huang, Weilin Peng, Xuan Chen, Xiaohong Jiang, Miao Yu, Ming Li, Yanfang Huang and Xiaoyu Yang

Vitrification of embryos is a routine procedure in IVF (in vitro fertilization) laboratories. In the present study, we aimed to investigate the effect of vitrification on mouse preimplantation embryo development in vitro, and effect on the epigenetic status of imprinted gene Grb10 in mouse embryos. The blastocyst formation rate for vitrified 8-cell embryos was similar to the non-vitrified 8-cell embryos, whereas the blastocyst hatching rate was lower than that of the non-vitrified group. The expression level of Grb10 major-type transcript decreased significantly in vitrified blastocysts compared with non-vitrified and in vivo blastocysts. Moreover, the global DNA methylation level in 8-cell embryos and blastocysts, and the DNA methylation at CpG island 1 (CGI1) of Grb10 in blastocysts were also significantly decreased after vitrification. In vitro culture condition had no adverse effect, except for on the DNA methylation in Grb10 CGI1. These results suggest that vitrification may reduce the in vitro development of mouse 8-cell embryos and affect the expression and DNA methylation of imprinted gene Grb10.

Free access

Wei Wang, Xia Chen, Xinxiu Li, Li Wang, Haiyan Zhang, Yu He, Jingjing Wang, Yongyan Zhao, Baole Zhang and Yinxue Xu

FSH plays a critical role in granulosa cell (GC) proliferation and steroidogenesis through modulation by factors including bone morphogenetic proteins family, which belongs to transforming growth factor β (TGFB) superfamily. TGFBs are the key factors in maintaining cell growth and differentiation in ovaries. However, the interaction of FSH and TGFB on the GCs' proliferation and steroidogenesis remains to be elucidated. In this study, we have investigated the role of SMAD4, a core molecule mediating the intracellular TGFB/SMAD signal transduction pathway, in FSH-mediated proliferation and steroidogenesis of porcine GCs. In this study, SMAD4 was knocked down using interference RNA in porcine GCs. Our results showed that SMAD4-siRNA causes specific inhibition of SMAD4 mRNA and protein expression after transfection. Knockdown of SMAD4 significantly inhibited FSH-induced porcine GC proliferation and estradiol production and changed the expression of cyclin D2, CDK2, CDK4, CYP19a1, and CYP11a1. Thus, these observations establish an important role of SMAD4 in the regulation of the response of porcine GCs to FSH.

Free access

Hui Li, Yu-Han Meng, Wen-Qing Shang, Li-Bing Liu, Xuan Chen, Min-Min Yuan, Li-Ping Jin, Ming-Qing Li and Da-Jin Li

Chemokine CCL24, acting through receptor CCR3, is a potent chemoattractant for eosinophil in allergic diseases and parasitic infections. We recently reported that CCL24 and CCR3 are co-expressed by trophoblasts in human early pregnant uterus. Here we prove with evidence that steroid hormones estradiol (E), progesterone (P), and human chorionic gonadotropin (hCG), as well as decidual stromal cells (DSCs) could regulate the expression of CCL24 and CCR3 of trophoblasts. We further investigate how trophoblast-derived CCL24 mediates the function of trophoblasts in vitro, and conclude that CCL24/CCR3 promotes the proliferation, viability and invasiveness of trophoblasts. In addition, analysis of the downstream signaling pathways of CCL24/CCR3 show that extracellular signal-regulated kinases (ERK1/2) and phosphoinositide 3-kinase (PI3K) pathways may contribute to the proliferation, viability and invasiveness of trophoblasts by activating intracellular molecules Ki67 and matrix metallopeptidase 9 (MMP9). However, we did not observe any inhibitory effect on trophoblasts when blocking c-Jun N-terminal kinase (JNK) or p38 pathways. In conclusion, our data suggests that trophoblast-derived CCL24 at the maternal-fetal interface promotes trophoblasts cell growth and invasiveness by ERK1/2 and PI3K pathways. Meanwhile, pregnancy-related hormones (P and hCG), as well as DSCs could up-regulate CCL24/CCR3 expression in trophoblasts, which may indirectly influence the biological functions of trophoblasts. Thus, our results provide a possible explanation for the growth and invasion of trophoblasts in human embryo implantation.

Free access

Zi-gang Shen, Wei He, Ji Zhang, Hai-yang He, Xia Yang, Zheng-qiong Chen, Ping Yang, Jian Li, Zhi-qing Liang, Yu-zhang Wu and Jin-tao Li

SPINLW1 (previously known as eppin (epididymal protease inhibitor)) is a target under intense scrutiny in the study of male contraceptive vaccines. B-cell-dominant epitopes are now recognized as key parts of the induction of humoral immune responses against target antigens. The generation of robust humoral responses in vivo has become a crucial problem in the development of modern vaccines. In this study, we developed a completely novel B-cell-dominant-epitope-based mimovirus vaccine, which is a kind of virus-size particulate antigen delivery system. The mimovirus successfully self-assembled from a cationic peptide containing a cell-penetrating peptide of TAT49–57 and a plasmid DNA encoding both three SPINLW1 (103–115) copies and adjuvant C3d3. The male mice were immunized with the epitope-based mimovirus vaccine, which resulted in a gradual elevation of specific serum IgG antibody levels. These reached a peak at week 4. Mating for the fertility assay showed that the mimovirus vaccine had accomplished a moderate fertility inhibition effect and investigation into the mechanism of action showed that it did so by interfering with the reproductive function of the sperm but that it did not damage the structures of the testes or cause serum testosterone to decline. Our results suggest an ideal protocol for suppressing fertility in mice by an engineered mimovirus vaccine.

Free access

Meng-Ling Liu, Jing-Lei Wang, Jie Wei, Lin-Lin Xu, Mei Yu, Xiao-Mei Liu, Wen-Li Ruan and Jia-Xiang Chen

Tri-ortho-cresyl phosphate (TOCP) has been widely used as plasticizers, plastic softeners, and flame retardants in industry and reported to have a deleterious effect on the male reproductive system in animals besides delayed neurotoxicity. Our preliminary results found that TOCP could disrupt the seminiferous epithelium in the testis and inhibit spermatogenesis, but the precise mechanism is yet to be elucidated. This study shows that TOCP inhibited viability of rat spermatogonial stem cells in a dose-dependent manner. TOCP could not lead to cell cycle arrest in the cells; the mRNA levels of p21, p27, p53, and cyclin D1 in the cells were also not affected by TOCP. Meanwhile, TOCP did not induce apoptosis of rat spermatogonial stem cells. After treatment with TOCP, however, both LC3-II and the ratio of LC3-II/LC3-I were markedly increased; autophagy proteins ATG5 and beclin 1 were also increased after treatment with TOCP, indicating that TOCP could induce autophagy in the cells. Ultrastructural observation under the transmission electron microscopy indicated that autophagic vesicles in the cytoplasm containing extensively degraded organelles such as mitochondria and endoplasmic reticulum increased significantly after the cells were treated with TOCP. In summary, we have shown that TOCP can inhibit viability of rat spermatogonial stem cells and induce autophagy of the cells, without affecting cell cycle and apoptosis.