Search Results

You are looking at 1 - 10 of 31 items for

  • Author: Yu Wang x
  • All content x
Clear All Modify Search
Free access

Wei Wang, Xia Chen, Xinxiu Li, Li Wang, Haiyan Zhang, Yu He, Jingjing Wang, Yongyan Zhao, Baole Zhang, and Yinxue Xu

FSH plays a critical role in granulosa cell (GC) proliferation and steroidogenesis through modulation by factors including bone morphogenetic proteins family, which belongs to transforming growth factor β (TGFB) superfamily. TGFBs are the key factors in maintaining cell growth and differentiation in ovaries. However, the interaction of FSH and TGFB on the GCs' proliferation and steroidogenesis remains to be elucidated. In this study, we have investigated the role of SMAD4, a core molecule mediating the intracellular TGFB/SMAD signal transduction pathway, in FSH-mediated proliferation and steroidogenesis of porcine GCs. In this study, SMAD4 was knocked down using interference RNA in porcine GCs. Our results showed that SMAD4-siRNA causes specific inhibition of SMAD4 mRNA and protein expression after transfection. Knockdown of SMAD4 significantly inhibited FSH-induced porcine GC proliferation and estradiol production and changed the expression of cyclin D2, CDK2, CDK4, CYP19a1, and CYP11a1. Thus, these observations establish an important role of SMAD4 in the regulation of the response of porcine GCs to FSH.

Free access

Yue Li, Ru Zheng, Rui Wang, Xiaoyin Lu, Cheng Zhu, Hai-Yan Lin, Hongmei Wang, Xiaoguang Yu, and Jiejun Fu

The placenta has numerous functions, such as transporting oxygen and nutrients and building the immune tolerance of the fetus. Cell fusion is an essential process for placental development and maturation. In human placental development, mononucleated cytotrophoblast (CTB) cells can fuse to form a multinucleated syncytiotrophoblast (STB), which is the outermost layer of the placenta. Nephrin is a transmembrane protein that belongs to the Ig superfamily. Previous studies have shown that nephrin contributes to the fusion of myoblasts into myotubes in zebrafish and mice, presenting a functional conservation with its Drosophila ortholog sticks and stones. However, whether nephrin is involved in trophoblast syncytialization remains unclear. In this study, we report that nephrin was localized predominantly in the CTB cells and STB of human placenta villi from first trimester to term pregnancy. Using a spontaneous fusion model of primary CTB cells, the expression of nephrin was found to be increased during trophoblast cell fusion. Moreover, the spontaneous syncytialization and the expression of syncytin 2, connexin 43, and human chorionic gonadotropin beta were significantly inhibited by nephrin-specific siRNAs. The above results demonstrate that nephrin plays an important role in trophoblast syncytialization.

Open access

Hang Qi, Guiling Liang, Jin Yu, Xiaofeng Wang, Yan Liang, Xiaoqing He, Tienan Feng, and Jian Zhang

MicroRNA (miRNA) expression profiles in tubal endometriosis (EM) are still poorly understood. In this study, we analyzed the differential expression of miRNAs and the related gene networks and signaling pathways in tubal EM. Four tubal epithelium samples from tubal EM patients and five normal tubal epithelium samples from uterine leiomyoma patients were collected for miRNA microarray. Bioinformatics analyses, including Ingenuity Pathway Analysis (IPA), Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, were performed. Quantitative real-time polymerase chain reaction (qRT-PCR) validation of five miRNAs was performed in six tubal epithelium samples from tubal EM and six from control. A total of 17 significantly differentially expressed miRNAs and 4343 potential miRNA-target genes involved in tubal EM were identified (fold change >1.5 and FDR-adjusted P value <0.05). IPA indicated connections between miRNAs, target genes and other gynecological diseases like endometrial carcinoma. GO and KEGG analysis revealed that most of the identified genes were involved in the mTOR signaling pathway, SNARE interactions in vesicular transport and endocytosis. We constructed an miRNA-gene-disease network using target gene prediction. Functional analysis showed that the mTOR pathway was connected closely to tubal EM. Our results demonstrate for the first time the differentially expressed miRNAs and the related signal pathways involved in the pathogenesis of tubal EM which contribute to elucidating the pathogenic mechanism of tubal EM-related infertility.

Free access

Yu-Qian Wang, Aalia Batool, Su-Ren Chen, and Yi-Xun Liu

Reduced contractility of the testicular peritubular myoid (PTM) cells may contribute to human male subfertility or infertility. Transcription factor GATA4 in Sertoli and Leydig cells is essential for murine spermatogenesis, but limited attention has been paid to the potential role of GATA4 in PTM cells. In primary cultures of mouse PTM cells, siRNA knockdown of GATA4 increased the contractile activity, while GATA4 overexpression significantly attenuated the contractility of PTM cells using a collagen gel contraction assay. Using RNA sequencing and qRT-PCR, we identified a set of genes that exhibited opposite expressional alternation between Gata4 siRNA vs nontargeting siRNA-treated PTM cells and Gata4 adenovirus vs control adenovirus-treated PTM cells. Notably, ion channels, smooth muscle function, cytokines and chemokines, cytoskeleton, adhesion and extracellular matrix were the top four enriched pathways, as revealed by cluster analysis. Natriuretic peptide type B (NPPB) content was significantly upregulated by GATA4 overexpression in both PTM cells and their culture supernatant. More importantly, the addition of 100 μM NPPB could abolish the promoting effect of Gata4 silencing on PTM cell contraction. Taken together, we suggest that the inhibitory action of GATA4 on PTM cell contraction is mediated at least partly by regulating genes belonging to smooth muscle contraction pathway (e.g. Nppb).

Free access

Chulin Yu, Meiling Li, Yue Wang, Ying Liu, Chengzhi Yan, Jirong Pan, Jiali Liu, and Sheng Cui

The corticotropin-releasing hormone (CRH) signaling system is involved in numbers of stress-related physiological and pathological responses, including its inhibiting effects on estradiol (E2) synthesis and follicular development in the ovary. In addition, there are reports that microRNAs (miRNAs) can control the function of animal reproductive system. The aim of present study was to investigate the functions of miR-375 and the relationship between miR-375 and CRH signaling molecules in the porcine ovary. First, our common PCR results show that miR-375 and the CRH receptor 1 (CRHR1) are expressed in porcine ovary, whereas CRH receptor 2 (CRHR2) is not detected. We further have located the cell types of miR-375 and CRHR1 by in situ hybridization (ISH), and the results show that miR-375 is located only in the granulosa cells, whereas CRHR1 is positive in all of granulosa cells and oocytes, inferring that miR-375 and CRHR1 are co-localized in granulosa cells. Second, we show that overexpression of miR-375 in cultured granulosa cells suppresses the E2 production, whereas miR-375 knockdown demonstrates the opposite result. Besides, our in vitro results demonstrate that miR-375 mediates the signaling pathway of CRH inhibiting E2 synthesis. Finally, our data show that the action of miR-375 is accomplished by directly binding to the 3′UTR of specificity protein1 (SP1) mRNA to decrease the SP1 protein level. Thus, we conclude that miR-375 is a key factor in regulating E2 synthesis by mediating the CRH signaling pathway.

Free access

Qian Zhang, Song Yu, Xing Huang, Yi Tan, Cheng Zhu, Yan-Ling Wang, Haibin Wang, Hai-Yan Lin, Jiejun Fu, and Hongmei Wang

Cullin 3 (CUL3), a scaffold protein, assembles a large number of ubiquitin ligase complexes, similar to Skp1-Cullin 1-F-box protein complex. Several genetic models have shown that CUL3 is crucial for early embryonic development. Nevertheless, the role of CUL3 in human trophoblast function remains unclear. In this study, immunostaining revealed that CUL3 was strongly expressed in the villous cytotrophoblasts, the trophoblast column, and the invasive extravillous trophoblasts. Silencing CUL3 significantly inhibited the outgrowth of villous explant ex vivo and decreased invasion and migration of trophoblast HTR8/SVneo cells. Furthermore, CUL3 siRNA decreased pro-MMP9 activity and increased the levels of TIMP1 and 2. We also found that the level of CUL3 in the placental villi from pre-eclamptic patients was significantly lower as compared to that from their gestational age-matched controls. Moreover, in the lentiviral-mediated placenta-specific CUL3 knockdown mice, lack of CUL3 resulted in less invasive trophoblast cells in the maternal decidua. Taken together, these results suggest an essential role for CUL3 in the invasion and migration of trophoblast cells, and dysregulation of its expression may be associated with the onset of pre-eclampsia.

Free access

Huijuan Zhang, Guishuan Wang, Lin Liu, Xiaolin Liang, Yu Lin, Yi-Yu Lin, Chu-Fang Chou, Mo-Fang Liu, Hefeng Huang, and Fei Sun

The chromatoid body (CB) is a specific cloud-like structure in the cytoplasm of haploid spermatids. Recent findings indicate that CB is identified as a male germ cell-specific RNA storage and processing center, but its function has remained elusive for decades. In somatic cells, KH-type splicing regulatory protein (KSRP) is involved in regulating gene expression and maturation of select microRNAs (miRNAs). However, the function of KSRP in spermatogenesis remains unclear. In this study, we showed that KSRP partly localizes in CB, as a component of CB. KSRP interacts with proteins (mouse VASA homolog (MVH), polyadenylate-binding protein 1 (PABP1) and polyadenylate-binding protein 2 (PABP2)), mRNAs (Tnp2 and Odf1) and microRNAs (microRNA-182) in mouse CB. Moreover, KSRP may regulate the integrity of CB via DDX5-miRNA-182 pathway. In addition, we found abnormal expressions of CB component in testes of Ksrp-knockout mice and of patients with hypospermatogenesis. Thus, our results provide mechanistic insight into the role of KSRP in spermatogenesis.

Free access

Guo-Min Zhang, Ming-Tian Deng, Zhi-Hai Lei, Yong-Jie Wan, Hai-Tao Nie, Zi-Yu Wang, Yi-Xuan Fan, Feng Wang, and Yan-Li Zhang

During goat follicular development, abnormal expression of nuclear respiratory factor 1 (NRF1) in granulosa cells may drive follicular atresia with unknown regulatory mechanisms. In this study, we investigated the effects of NRF1 on steroidogenesis and cell apoptosis by overexpressing or silencing it in goat luteinized granulosa cells (LGCs). Results showed that knockdown of NRF1 expression significantly inhibited the expression of STAR and CYP19A1, which are involved in sex steroid hormones synthesis, and led to lower estrogen levels. Knockdown of NRF1 resulted in an increased percentage of apoptosis, probably due to the release of cytochrome c from mitochondria, accompanied by upregulating mRNA and protein levels of apoptosis-related markers BAX, caspase 3 and caspase 9. These data indicate that NRF1 might be related with steroidogenesis and cell apoptosis. Furthermore, NRF1 silence reduced mitochondrial transcription factor A (TFAM) transcription activity, mtDNA copy number and ATP level. Simultaneously, knockdown of NRF1 suppressed the transcription and translation levels of SOD, GPx and CAT, decreased glutathione level and increased 8-OHdG level. However, the overexpression of NRF1 in LGCs or gain of TFAM in NRF1 silenced LGCs increased the expression of genes involved in mitochondrial function and biogenesis, and elevated the antioxidant stress system and steroids synthesis. Taken together, aberrant expression of NRF1 could induce mitochondrial dysfunction and disturb the cellular redox balance, which lead to disturbance of steroid hormone synthesis, and trigger LGC apoptosis through the mitochondria-dependent pathway. These findings will be helpful for understanding the role of NRF1 in goat ovarian follicular development and atresia.

Free access

Songcun Wang, Fengrun Sun, Mutian Han, Yinghua Liu, Qinyan Zou, Fuxin Wang, Yu Tao, Dajin Li, Meirong Du, Hong Li, and Rui Zhu

There is delicate crosstalk between fetus-derived trophoblasts (Tros) and maternal cells during normal pregnancy. Dysfunctions in interaction are highly linked to some pregnancy complications, such as recurrent spontaneous abortion (RSA), pre-eclampsia and fetal growth restriction. Hyaluronan (HA), the most abundant component of extracellular matrix, has been reported to act as both a pro- and an anti-inflammatory molecule. Previously, we reported that HA promotes the invasion and proliferation of Tros by activating PI3K/Akt and MAPK/ERK1/2 signaling pathways. While lower HA secretion by Tros was observed during miscarriages than that during normal pregnancies, in the present study, we further confirmed that higher secretion of HA by Tros could induce M2 polarization of macrophages at the maternal–fetal interface by interacting with CD44 and activating the downstream PI3K/Akt-STAT-3/STAT-6 signaling pathways. Furthermore, HA could restore the production of IL-10 and other normal pregnancy markers by decidual macrophages (dMφs) from RSA. These findings underline the important roles of HA in regulating the function of dMφs and maintaining a normal pregnancy.

Free access

Pan-Pan Cheng, Jun-Jie Xia, Hai-Long Wang, Ji-Bing Chen, Fei-Yu Wang, Ye Zhang, Xin Huang, Quan-Jun Zhang, and Zhong-Quan Qi

Maternal diabetes adversely affects preimplantation embryo development and oocyte maturation. Thus, it is important to identify ways to eliminate the effects of maternal diabetes on preimplantation embryos and oocytes. The objectives of this study were to investigate whether islet transplantation could reverse the effects of diabetes on oocytes. Our results revealed that maternal diabetes induced decreased ovulation; increased the frequency of meiotic spindle defects, chromosome misalignment, and aneuploidy; increased the relative expression levels of Mad2 and Bub1; and enhanced the sensitivity of oocytes to parthenogenetic activation. Islet transplantation prevented these detrimental effects. Therefore, we concluded that islet transplantation could reverse the effects of diabetes on oocytes, and that this technique may be useful to treat the fundamental reproductive problems of women with diabetes mellitus.