Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Yu-Kai Liu x
  • Refine by Access: All content x
Clear All Modify Search
Yu-Yin Liu Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Yu-Yin Liu in
Google Scholar
PubMed
Close
,
Yu-Kai Liu Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Yu-Kai Liu in
Google Scholar
PubMed
Close
,
Wen-Ting Hu Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Wen-Ting Hu in
Google Scholar
PubMed
Close
,
Ling-Li Tang Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Ling-Li Tang in
Google Scholar
PubMed
Close
,
Yan-Ran Sheng Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Yan-Ran Sheng in
Google Scholar
PubMed
Close
,
Chun-Yan Wei Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Chun-Yan Wei in
Google Scholar
PubMed
Close
,
Ming-Qing Li Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People’s Republic of China

Search for other papers by Ming-Qing Li in
Google Scholar
PubMed
Close
, and
Xiao-Yong Zhu Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People’s Republic of China

Search for other papers by Xiao-Yong Zhu in
Google Scholar
PubMed
Close

Endometriosis (EMS) is a chronic inflammatory disease characterized by the presence of extrauterine endometrial tissues. It has been previously reported that the refluxed blood containing viable endometrial tissues and the defective elimination of peritoneal macrophages in the pelvic cavity may involve in EMS pathogenesis. However, the mechanism by which macrophages exhibit attenuated phagocytic capability in EMS remains undetermined. Herein, we found that heme, the byproduct of lysed erythrocytes, accumulated abnormally in the peritoneal fluid (PF) of patients with EMS (14.22 μmol/L, 95% confidence interval (CI): 12.54–16.71), compared with the EMS-free group (9.517 μmol/L, 95% CI: 8.891–10.1053). This abnormal accumulation was not associated with the color of PF, phase of the menstrual cycle or severity of the disease. The reduced phagocytic ability of peritoneal macrophages (pMφs) was observed in the EMS group. Consistently, a high-concentration (30 μmol/L) heme treatment impaired EMS-pMφs phagocytosis more than a low-concentration (10 μmol/L) heme treatment. A similar phenomenon was observed in the EMS-free control pMφs (Ctrl-pMφs) and the CD14+ peripheral monocytes (CD14+ Mos). These results indicated that a high heme concentration exhibits a negative effect on macrophage phagocytosis, which supplements the mechanism of impaired scavenger function of pMφs in EMS.

Restricted access
Xuan-Tong Liu Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Xuan-Tong Liu in
Google Scholar
PubMed
Close
,
Hui-Ting Sun Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Hui-Ting Sun in
Google Scholar
PubMed
Close
,
Zhong-Fang Zhang Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Zhong-Fang Zhang in
Google Scholar
PubMed
Close
,
Ru-Xia Shi Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Ru-Xia Shi in
Google Scholar
PubMed
Close
,
Li-Bing Liu Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Li-Bing Liu in
Google Scholar
PubMed
Close
,
Jia-Jun Yu Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Jia-Jun Yu in
Google Scholar
PubMed
Close
,
Wen-Jie Zhou Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Wen-Jie Zhou in
Google Scholar
PubMed
Close
,
Chun-Jie Gu Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Chun-Jie Gu in
Google Scholar
PubMed
Close
,
Shao-Liang Yang Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Shao-Liang Yang in
Google Scholar
PubMed
Close
,
Yu-Kai Liu Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Yu-Kai Liu in
Google Scholar
PubMed
Close
,
Hui-Li Yang Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Hui-Li Yang in
Google Scholar
PubMed
Close
,
Feng-Xuan Xu Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering and Emory School of Medicine, Georgia Institute of Technology, Atlanta, Georgia, USA

Search for other papers by Feng-Xuan Xu in
Google Scholar
PubMed
Close
, and
Ming-Qing Li Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Ming-Qing Li in
Google Scholar
PubMed
Close

It has been reported that the impaired cytotoxicity of natural killer (NK) cells and abnormal cytokines that are changed by the interaction between ectopic endometrial cells and immune cells is indispensable for the initiation and development of endometriosis (EMS). However, the mechanism of NK cells dysfunction in EMS remains largely unclear. Here, we found that NK cells in peritoneal fluid from women with EMS highly expressed indoleamine 2,3-dioxygenase (IDO). Furthermore, IDO+NK cells possessed lower NKp46 and NKG2D but higher IL-10 than that of IDO-NK. Co-culture with endometrial stromal cells (nESCs) from healthy control or ectopic ESCs (eESCs) from women with EMS led to a significant increase in the IDO level in NK cells from peripheral blood, particularly eESCs, and an anti-TGF-β neutralizing antibody suppressed these effects in vitro. NK cells co-cultured with ESC more preferentially inhibited the viability of nESCs than eESCs did, and pretreating with 1-methyl-tryptophan (1-MT), an IDO inhibitor, reversed the inhibitory effect of NK cells on eESC viability. These data suggest that ESCs induce IDO+NK cells differentiation partly by TGF-β and that IDO further restricts the cytotoxicity of NK cells in response to eESCs, which provides a potential therapeutic strategy for EMS patients, particularly those with a high number of impaired cytotoxic IDO+NK cells.

Free access
Jia-Jun Yu Department of Gynecology, Changzhou NO.2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Jia-Jun Yu in
Google Scholar
PubMed
Close
,
Hui-Ting Sun Department of Gynecology, Changzhou NO.2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Hui-Ting Sun in
Google Scholar
PubMed
Close
,
Zhong-Fang Zhang Department of Gynecology, Changzhou NO.2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Zhong-Fang Zhang in
Google Scholar
PubMed
Close
,
Ru-Xia Shi Department of Gynecology, Changzhou NO.2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Ru-Xia Shi in
Google Scholar
PubMed
Close
,
Li-Bing Liu Department of Gynecology, Changzhou NO.2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Li-Bing Liu in
Google Scholar
PubMed
Close
,
Wen-Qing Shang Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Wen-Qing Shang in
Google Scholar
PubMed
Close
,
Chun-Yan Wei Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Chun-Yan Wei in
Google Scholar
PubMed
Close
,
Kai-Kai Chang Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Kai-Kai Chang in
Google Scholar
PubMed
Close
,
Jun Shao Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Jun Shao in
Google Scholar
PubMed
Close
,
Ming-Yan Wang Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Ming-Yan Wang in
Google Scholar
PubMed
Close
, and
Ming-Qing Li Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People’s Republic of China

Search for other papers by Ming-Qing Li in
Google Scholar
PubMed
Close

Endometriosis (EMS) is associated with an abnormal immune response to endometrial cells, which can facilitate the implantation and proliferation of ectopic endometrial tissues. It has been reported that human endometrial stromal cells (ESCs) express interleukin (IL)15. The aim of our study was to elucidate whether or not IL15 regulates the cross talk between ESCs and natural killer (NK) cells in the endometriotic milieu and, if so, how this regulation occurs. The ESC behaviors in vitro were verified by Cell Counting Kit-8 (CCK-8), Annexin/PI, and Matrigel invasion assays, respectively. To imitate the local immune microenvironment, the co-culture system between ESCs and NK cells was constructed. The effect of IL15 on NK cells in the co-culture unit was investigated by flow cytometry (FCM). In this study, we found that ectopic endometrium from patients with EMS highly expressed IL15. Rapamycin, an autophagy inducer, decreased the level of IL15 receptors (i.e. IL15Rα and IL2Rβ). IL15 inhibits apoptosis and promotes the invasiveness, viability, and proliferation of ESCs. Meanwhile, a co-culture with ESCs led to a decrease in CD16 on NK cells. In the co-culture system, IL15 treatment downregulated the levels of Granzyme B and IFN-γ in CD16+NK cells, NKG2D in CD56dimCD16-NK cells, and NKP44 in CD56brightCD16-NK cells. On the one hand, these results indicated that IL15 derived from ESCs directly stimulates the growth and invasion of ESCs. On the other hand, IL15 may help the immune escape of ESCs by suppressing the cytotoxic activity of NK cells in the ectopic milieu, thereby facilitating the progression of EMS.

Free access
Xue-Min Qiu NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Xue-Min Qiu in
Google Scholar
PubMed
Close
,
Zhen-Zhen Lai NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Zhen-Zhen Lai in
Google Scholar
PubMed
Close
,
Si-Yao Ha NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Si-Yao Ha in
Google Scholar
PubMed
Close
,
Hui-Li Yang NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Hui-Li Yang in
Google Scholar
PubMed
Close
,
Li-Bing Liu Department of Gynecology, Changzhou No. 2 People’s Hospital, affiliated with Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China

Search for other papers by Li-Bing Liu in
Google Scholar
PubMed
Close
,
Yan Wang Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Yan Wang in
Google Scholar
PubMed
Close
,
Jia-Wei Shi NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Jia-Wei Shi in
Google Scholar
PubMed
Close
,
Lu-Yu Ruan NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Lu-Yu Ruan in
Google Scholar
PubMed
Close
,
Jiang-Feng Ye Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Jiang-Feng Ye in
Google Scholar
PubMed
Close
,
Jiang-Nan Wu Clinical Epidemiology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Jiang-Nan Wu in
Google Scholar
PubMed
Close
,
Qiang Fu Department of Immunology, Binzhou Medical College, Yantai, Shandong Province, People’s Republic of China

Search for other papers by Qiang Fu in
Google Scholar
PubMed
Close
,
Xiao-Fang Yi Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Xiao-Fang Yi in
Google Scholar
PubMed
Close
,
Kai-Kai Chang Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Kai-Kai Chang in
Google Scholar
PubMed
Close
, and
Ming-Qing Li NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Laboratory for Reproductive Immunology, Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China
Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, People’s Republic of China

Search for other papers by Ming-Qing Li in
Google Scholar
PubMed
Close

Immune cells and cytokines have important roles in the pathogenesis of endometriosis. However, the production and role of cytokines of T helper type 1 (Th1) and Th2 cells in the progress of endometriosis have remained to be fully elucidated. The present study reported that the interferon (IFN)-γ levels and the percentage of IFN-γ+CD4+ cells were significantly increased in the peritoneal fluid (PF) at the early stage and maintained at a higher level at the advanced stage of endometriosis; furthermore, interleukin (IL)-10 and IL-10+CD4+ cells were elevated in the advanced stage of endometriosis. In addition, IL-2 levels in the PF at the advanced stage of endometriosis were elevated and negatively associated with IFN-γ expression. In a co-culture system of ectopic endometrial stromal cells (ESCs) and macrophages, elevated IL-2 was observed, and treatment with cytokines IL-2 and transforming growth factor-β led to upregulation of the ratio of IL-2+ macrophages. IL-27-overexpressing ESCs and macrophages were able to induce a higher ratio of IL-10+CD4+ T cells. Blocking of IL-2 with anti-IL-2 neutralizing antibody led to upregulation of the ratio of IFN-γ+CD4+ T cells in the co-culture system in vitro. Recombinant human IL-10 and IFN-γ promoted the viability, invasiveness and transcription levels of matrix metalloproteinase (MMP)2, MMP9, and prostaglandin-endoperoxide synthase 2 of ESCs, particularly combined treatment with IL-10 and IFN-γ. These results suggest that IL-2 and IL-27 synergistically promote the growth and invasion of ESCs by modulating the balance of IFN-γ and IL-10 and contribute to the progress of endometriosis.

Restricted access