Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Yu-Kai Liu x
Clear All Modify Search
Free access

Xuan-Tong Liu, Hui-Ting Sun, Zhong-Fang Zhang, Ru-Xia Shi, Li-Bing Liu, Jia-Jun Yu, Wen-Jie Zhou, Chun-Jie Gu, Shao-Liang Yang, Yu-Kai Liu, Hui-Li Yang, Feng-Xuan Xu and Ming-Qing Li

It has been reported that the impaired cytotoxicity of natural killer (NK) cells and abnormal cytokines that are changed by the interaction between ectopic endometrial cells and immune cells is indispensable for the initiation and development of endometriosis (EMS). However, the mechanism of NK cells dysfunction in EMS remains largely unclear. Here, we found that NK cells in peritoneal fluid from women with EMS highly expressed indoleamine 2,3-dioxygenase (IDO). Furthermore, IDO+NK cells possessed lower NKp46 and NKG2D but higher IL-10 than that of IDO-NK. Co-culture with endometrial stromal cells (nESCs) from healthy control or ectopic ESCs (eESCs) from women with EMS led to a significant increase in the IDO level in NK cells from peripheral blood, particularly eESCs, and an anti-TGF-β neutralizing antibody suppressed these effects in vitro. NK cells co-cultured with ESC more preferentially inhibited the viability of nESCs than eESCs did, and pretreating with 1-methyl-tryptophan (1-MT), an IDO inhibitor, reversed the inhibitory effect of NK cells on eESC viability. These data suggest that ESCs induce IDO+NK cells differentiation partly by TGF-β and that IDO further restricts the cytotoxicity of NK cells in response to eESCs, which provides a potential therapeutic strategy for EMS patients, particularly those with a high number of impaired cytotoxic IDO+NK cells.

Restricted access

Yu-Yin Liu, Yu-Kai Liu, Wen-Ting Hu, Ling-Li Tang, Yan-Ran Sheng, Chun-Yan Wei, Ming-Qing Li and Xiao-Yong Zhu

Endometriosis (EMS) is a chronic inflammatory disease characterized by the presence of extrauterine endometrial tissues. It has been previously reported that the refluxed blood containing viable endometrial tissues and the defective elimination of peritoneal macrophages in the pelvic cavity may involve in EMS pathogenesis. However, the mechanism by which macrophages exhibit attenuated phagocytic capability in EMS remains undetermined. Herein, we found that heme, the byproduct of lysed erythrocytes, accumulated abnormally in the peritoneal fluid (PF) of patients with EMS (14.22 μmol/L, 95% confidence interval (CI): 12.54–16.71), compared with the EMS-free group (9.517 μmol/L, 95% CI: 8.891–10.1053). This abnormal accumulation was not associated with the color of PF, phase of the menstrual cycle or severity of the disease. The reduced phagocytic ability of peritoneal macrophages (pMφs) was observed in the EMS group. Consistently, a high-concentration (30 μmol/L) heme treatment impaired EMS-pMφs phagocytosis more than a low-concentration (10 μmol/L) heme treatment. A similar phenomenon was observed in the EMS-free control pMφs (Ctrl-pMφs) and the CD14+ peripheral monocytes (CD14+ Mos). These results indicated that a high heme concentration exhibits a negative effect on macrophage phagocytosis, which supplements the mechanism of impaired scavenger function of pMφs in EMS.

Free access

Jia-Jun Yu, Hui-Ting Sun, Zhong-Fang Zhang, Ru-Xia Shi, Li-Bing Liu, Wen-Qing Shang, Chun-Yan Wei, Kai-Kai Chang, Jun Shao, Ming-Yan Wang and Ming-Qing Li

Endometriosis (EMS) is associated with an abnormal immune response to endometrial cells, which can facilitate the implantation and proliferation of ectopic endometrial tissues. It has been reported that human endometrial stromal cells (ESCs) express interleukin (IL)15. The aim of our study was to elucidate whether or not IL15 regulates the cross talk between ESCs and natural killer (NK) cells in the endometriotic milieu and, if so, how this regulation occurs. The ESC behaviors in vitro were verified by Cell Counting Kit-8 (CCK-8), Annexin/PI, and Matrigel invasion assays, respectively. To imitate the local immune microenvironment, the co-culture system between ESCs and NK cells was constructed. The effect of IL15 on NK cells in the co-culture unit was investigated by flow cytometry (FCM). In this study, we found that ectopic endometrium from patients with EMS highly expressed IL15. Rapamycin, an autophagy inducer, decreased the level of IL15 receptors (i.e. IL15Rα and IL2Rβ). IL15 inhibits apoptosis and promotes the invasiveness, viability, and proliferation of ESCs. Meanwhile, a co-culture with ESCs led to a decrease in CD16 on NK cells. In the co-culture system, IL15 treatment downregulated the levels of Granzyme B and IFN-γ in CD16+NK cells, NKG2D in CD56dimCD16-NK cells, and NKP44 in CD56brightCD16-NK cells. On the one hand, these results indicated that IL15 derived from ESCs directly stimulates the growth and invasion of ESCs. On the other hand, IL15 may help the immune escape of ESCs by suppressing the cytotoxic activity of NK cells in the ectopic milieu, thereby facilitating the progression of EMS.

Restricted access

Xue-Min Qiu, Zhen-Zhen Lai, Si-Yao Ha, Hui-Li Yang, Li-Bing Liu, Yan Wang, Jia-Wei Shi, Lu-Yu Ruan, Jiang-Feng Ye, Jiang-Nan Wu, Qiang Fu, Xiao-Fang Yi, Kai-Kai Chang and Ming-Qing Li

Immune cells and cytokines have important roles in the pathogenesis of endometriosis. However, the production and role of cytokines of T helper type 1 (Th1) and Th2 cells in the progress of endometriosis have remained to be fully elucidated. The present study reported that the interferon (IFN)-γ levels and the percentage of IFN-γ+CD4+ cells were significantly increased in the peritoneal fluid (PF) at the early stage and maintained at a higher level at the advanced stage of endometriosis; furthermore, interleukin (IL)-10 and IL-10+CD4+ cells were elevated in the advanced stage of endometriosis. In addition, IL-2 levels in the PF at the advanced stage of endometriosis were elevated and negatively associated with IFN-γ expression. In a co-culture system of ectopic endometrial stromal cells (ESCs) and macrophages, elevated IL-2 was observed, and treatment with cytokines IL-2 and transforming growth factor-β led to upregulation of the ratio of IL-2+ macrophages. IL-27-overexpressing ESCs and macrophages were able to induce a higher ratio of IL-10+CD4+ T cells. Blocking of IL-2 with anti-IL-2 neutralizing antibody led to upregulation of the ratio of IFN-γ+CD4+ T cells in the co-culture system in vitro. Recombinant human IL-10 and IFN-γ promoted the viability, invasiveness and transcription levels of matrix metalloproteinase (MMP)2, MMP9, and prostaglandin-endoperoxide synthase 2 of ESCs, particularly combined treatment with IL-10 and IFN-γ. These results suggest that IL-2 and IL-27 synergistically promote the growth and invasion of ESCs by modulating the balance of IFN-γ and IL-10 and contribute to the progress of endometriosis.