Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Zamira Gibb x
Clear All Modify Search
Free access

Aleona Swegen, Benjamin J Curry, Zamira Gibb, Sarah R Lambourne, Nathan D Smith and R John Aitken

Stallion spermatozoa continue to present scientific and clinical challenges with regard to the biological mechanisms responsible for their survival and function. In particular, deeper understanding of sperm energy metabolism, defence against oxidative damage and cell–cell interactions should improve fertility assessment and the application of advanced reproductive technologies in the equine species. In this study, we used highly sensitive LC–MS/MS technology and sequence database analysis to identify and characterise the proteome of Percoll-isolated ejaculated equine spermatozoa, with the aim of furthering our understanding of this cell's complex biological machinery. We were able to identify 9883 peptides comprising 1030 proteins, which were subsequently attributed to 975 gene products. Gene ontology analysis for molecular and cellular processes revealed new information about the metabolism, antioxidant defences and receptors of stallion spermatozoa. Mitochondrial proteins and those involved in catabolic processes constituted dominant categories. Several enzymes specific to β-oxidation of fatty acids were identified, and further experiments were carried out to ascertain their functional significance. Inhibition of carnitine palmitoyl transferase 1, a rate-limiting enzyme of β-oxidation, reduced motility parameters, indicating that β-oxidation contributes to maintenance of motility in stallion spermatozoa.

Free access

Elizabeth G Bromfield, R John Aitken, Zamira Gibb, Sarah R Lambourne and Brett Nixon

While IVF has been widely successful in many domesticated species, the development of a robust IVF system for the horse remains an elusive and highly valued goal. A major impediment to the development of equine IVF is the fact that optimised conditions for the capacitation of equine spermatozoa are yet to be developed. Conversely, it is known that stallion spermatozoa are particularly susceptible to damage arising as a consequence of capacitation-like changes induced prematurely in response to semen handling and transport conditions. To address these limitations, this study sought to develop an effective system to both suppress and promote the in vitro capacitation of stallion spermatozoa. Our data indicated that the latter could be achieved in a bicarbonate-rich medium supplemented with a phosphodiesterase inhibitor, a cyclic AMP analogue, and methyl-β-cyclodextrin, an efficient cholesterol-withdrawing agent. The populations of spermatozoa generated under these conditions displayed a number of hallmarks of capacitation, including elevated levels of tyrosine phosphorylation, a reorganisation of the plasma membrane leading to lipid raft coalescence in the peri-acrosomal region of the sperm head, and a dramatic increase in their ability to interact with heterologous bovine zona pellucida (ZP) and undergo agonist-induced acrosomal exocytosis. Furthermore, this functional transformation was effectively suppressed in media devoid of bicarbonate. Collectively, these results highlight the importance of efficient cholesterol removal in priming stallion spermatozoa for ZP binding in vitro.

Restricted access

Roisin Ann Griffin, Mark Baker, Robert John Aitken, Aleona Swegen and Zamira Gibb

Stallions experience lower per cycle conception rates compared to other livestock species, largely because they are selected for breeding based on athletic prowess and not reproductive fitness. Mares are seasonal breeders, and pregnancies cannot be detected until 10-14 days post-cover via transrectal ultrasonography. This means the detection of stallion fertility fluctuations is delayed by at least two weeks, which within the short breeding season employed by the Thoroughbred horse breeding industry, can prove quite costly. For these reasons, there is increased demand for robust laboratory assays aimed at the accurate assessment of stallion fertility. This paper reviews our existing knowledge concerning the molecular mechanisms that underpin the functional competence of stallion spermatozoa, highlighting the relative importance of oxidative stress, DNA damage, sperm proteomics and RNA profile. We also consider the way in which fundamental improvements in our understanding of stallion sperm biology are informing the identification and development of possible biomarkers of fertility and thus avenues for the development of specific assays for fertility prediction.