Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Zengxiang Pan x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Xing Du, Qiqi Li, Zengxiang Pan, and Qifa Li

Androgen, which acts via the androgen receptor (AR), plays crucial roles in mammalian ovarian function. Recent studies showed that androgen/AR signaling regulates follicle-stimulating hormone receptor (FSHR) expression in follicles; however, the detailed mechanism underlying this regulation remained unknown. Here, we demonstrate that AR and miR-126* cooperate to inhibit FSHR expression and function in pig follicular granulosa cells (pGCs). In pGCs, overexpression of AR decreased, whereas knockdown increased, FSHR mRNA and protein expression; however, neither manipulation affected FSHR promoter activity. Using a dual-luciferase reporter assay, we found that the FSHR gene is a direct target of miR-126*, which inhibits FSHR expression and increases the rate of AR-induced apoptosis in pGCs. Collectively, our data show for the first time that the AR/miR-126* axis exerts synergetic effects in the regulation of FSHR expression and apoptosis in pGCs. Our findings thus define a novel pathway, AR/miR-126*/FSHR, that regulates mammalian GC functions.

Free access

Jinbi Zhang, Yang Liu, Wang Yao, Qifa Li, Honglin Liu, and Zengxiang Pan

In mammals, more than 99% of ovarian follicles undergo a degenerative process known as atresia. The molecular events involved in atresia initiation remain incompletely understood. The objective of this study was to analyze differential gene expression profiles of medium antral ovarian follicles during early atresia in pig. The transcriptome evaluation was performed on cDNA microarrays using healthy and early atretic follicle samples and was validated by quantitative PCR. Annotation analysis applying current database (Sus scrofa 11.1) revealed 450 significantly differential expressed genes between healthy and early atretic follicles. Among them, 142 were significantly upregulated in early atretic with respect to healthy group and 308 were downregulated. Similar expression trends were observed between microarray data and quantitative RT-PCR confirmation, which indicated the reliability of the microarray analysis. Further analysis of the differential expressed genes revealed the most significantly affected biological functions during early atresia including blood vessel development, regulation of DNA-templated transcription in response to stress and negative regulation of cell adhesion. The pathway and interaction analysis suggested that atresia initiation associates with (1) a crosstalk of cell apoptosis, autophagy and ferroptosis rather than change of typical apoptosis markers, (2) dramatic shift of steroidogenic enzymes, (3) deficient glutathione metabolism and (4) vascular degeneration. The novel gene candidates and pathways identified in the current study will lead to a comprehensive view of the molecular regulation of ovarian follicular atresia and a new understanding of atresia initiation.