Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Zhi-Bin Li x
  • Refine by access: All content x
Clear All Modify Search
Mei-rong Zhao State Key Laboratory of Reproductive Biology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Road, Beijing 100080, People’s Republic of China and Graduate School of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Search for other papers by Mei-rong Zhao in
Google Scholar
PubMed
Close
,
Wei Qiu State Key Laboratory of Reproductive Biology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Road, Beijing 100080, People’s Republic of China and Graduate School of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Search for other papers by Wei Qiu in
Google Scholar
PubMed
Close
,
Yu-xia Li State Key Laboratory of Reproductive Biology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Road, Beijing 100080, People’s Republic of China and Graduate School of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Search for other papers by Yu-xia Li in
Google Scholar
PubMed
Close
,
Zhi-bin Zhang State Key Laboratory of Reproductive Biology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Road, Beijing 100080, People’s Republic of China and Graduate School of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Search for other papers by Zhi-bin Zhang in
Google Scholar
PubMed
Close
,
Dong Li State Key Laboratory of Reproductive Biology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Road, Beijing 100080, People’s Republic of China and Graduate School of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Search for other papers by Dong Li in
Google Scholar
PubMed
Close
, and
Yan-ling Wang State Key Laboratory of Reproductive Biology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Road, Beijing 100080, People’s Republic of China and Graduate School of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Search for other papers by Yan-ling Wang in
Google Scholar
PubMed
Close

Transforming growth factor β (TGFβ) has been shown to be a multifunctional cytokine required for embryonic development and regulation of trophoblast cell behaviors. In the present study, a non-transformed cell-line representative of normal human trophoblast (NPC) was used to examine the effect of TGFβ1 on trophoblast cell adhesion and invasion. In vitro assay showed that TGFβ1 could significantly promote intercellular adhesion, while inhibiting cell invasion across the collagen I-coated filter. Reverse transcription (RT)-PCR and gelatin zymography demonstrated that TGFβ1 evidently repressed the mRNA expression and proenzyme production of matrix metalloproteinase (MMP)-9, but exerted no effect on mRNA expression and secretion of MMP-2. On the other hand, both the mRNA and protein expression of epithelial-cadherin and β-catenin were obviously upregulated by TGFβ1 in dose-dependent fashion, as revealed by RT-PCR and western-blot analysis. What is more, one of the critical TGFβ signaling molecules – Smad2 was notably phosphorylated in TGFβ1-treated NPC cells. The data indicates that cell invasion and adhesion are coordinated processes in human trophoblasts and that there exists paracrine regulation on adhesion molecules and invasion-associated enzymes in human placenta.

Free access
Hong-Jie Yuan Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, People’s Republic of China

Search for other papers by Hong-Jie Yuan in
Google Scholar
PubMed
Close
,
Zhi-Bin Li Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, People’s Republic of China

Search for other papers by Zhi-Bin Li in
Google Scholar
PubMed
Close
,
Xin-Yue Zhao Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, People’s Republic of China

Search for other papers by Xin-Yue Zhao in
Google Scholar
PubMed
Close
,
Guang-Yi Sun Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, People’s Republic of China

Search for other papers by Guang-Yi Sun in
Google Scholar
PubMed
Close
,
Guo-Liang Wang Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, People’s Republic of China

Search for other papers by Guo-Liang Wang in
Google Scholar
PubMed
Close
,
Ying-Qi Zhao Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, People’s Republic of China

Search for other papers by Ying-Qi Zhao in
Google Scholar
PubMed
Close
,
Min Zhang Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, People’s Republic of China

Search for other papers by Min Zhang in
Google Scholar
PubMed
Close
, and
Jing-He Tan Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an City, People’s Republic of China

Search for other papers by Jing-He Tan in
Google Scholar
PubMed
Close

Mechanisms by which female stress and particularly glucocorticoids impair oocyte competence are largely unclear. Although one study demonstrated that glucocorticoids triggered apoptosis in ovarian cells and oocytes by activating the FasL/Fas system, other studies suggested that they might induce apoptosis through activating other signaling pathways as well. In this study, both in vivo and in vitro experiments were conducted to test the hypothesis that glucocorticoids might trigger apoptosis in oocytes and ovarian cells through activating the TNF-α system. The results showed that cortisol injection of female mice (1.) impaired oocyte developmental potential and mitochondrial membrane potential with increased oxidative stress; (2.) induced apoptosis in mural granulosa cells (MGCs) with increased oxidative stress in the ovary; and (3.) activated the TNF-α system in both ovaries and oocytes. Culture with corticosterone induced apoptosis and activated the TNF-α system in MGCs. Knockdown or knockout of TNF-α significantly ameliorated the pro-apoptotic effects of glucocorticoids on oocytes and MGCs. However, culture with corticosterone downregulated TNF-α expression significantly in oviductal epithelial cells. Together, the results demonstrated that glucocorticoids impaired oocyte competence and triggered apoptosis in ovarian cells through activating the TNF-α system and that the effect of glucocorticoids on TNF-α expression might vary between cell types.

Restricted access
Qing Li Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China

Search for other papers by Qing Li in
Google Scholar
PubMed
Close
,
Juncen Guo Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China

Search for other papers by Juncen Guo in
Google Scholar
PubMed
Close
,
Gelin Huang Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China

Search for other papers by Gelin Huang in
Google Scholar
PubMed
Close
,
Nan Wu State Key Laboratory of Cellular Stress Biology, School of Life Sciences, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, PR China

Search for other papers by Nan Wu in
Google Scholar
PubMed
Close
,
Su Chen Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China

Search for other papers by Su Chen in
Google Scholar
PubMed
Close
,
Jing Dai Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China

Search for other papers by Jing Dai in
Google Scholar
PubMed
Close
,
Xueguang Zhang Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China

Search for other papers by Xueguang Zhang in
Google Scholar
PubMed
Close
,
Guohui Zhang Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China

Search for other papers by Guohui Zhang in
Google Scholar
PubMed
Close
,
Weiwei Zhi Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China

Search for other papers by Weiwei Zhi in
Google Scholar
PubMed
Close
,
Jierui Yan Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China

Search for other papers by Jierui Yan in
Google Scholar
PubMed
Close
,
Rui Zheng Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China

Search for other papers by Rui Zheng in
Google Scholar
PubMed
Close
,
Fei Yan Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China

Search for other papers by Fei Yan in
Google Scholar
PubMed
Close
,
Zheng Yan Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

Search for other papers by Zheng Yan in
Google Scholar
PubMed
Close
,
Ling Wu Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

Search for other papers by Ling Wu in
Google Scholar
PubMed
Close
,
Sixian Wu Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China

Search for other papers by Sixian Wu in
Google Scholar
PubMed
Close
,
Zhiliang Ji State Key Laboratory of Cellular Stress Biology, School of Life Sciences, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, Fujian, PR China

Search for other papers by Zhiliang Ji in
Google Scholar
PubMed
Close
,
Jiuzhi Zeng Key Laboratory of Reproductive Medicine, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, China

Search for other papers by Jiuzhi Zeng in
Google Scholar
PubMed
Close
,
Ge Lin Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China

Search for other papers by Ge Lin in
Google Scholar
PubMed
Close
,
Bin Li Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China

Search for other papers by Bin Li in
Google Scholar
PubMed
Close
, and
Wenming Xu Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China

Search for other papers by Wenming Xu in
Google Scholar
PubMed
Close

In brief

PLCZ1 mutations are related to total fertilisation failure (TFF) after intracytoplasmic sperm injection (ICSI), characterised by abnormal oocyte oscillations. The novel PLCZ1 compound heterozygous mutations reported by this study were associated with TFF after ICSI, with one of the mutations indicating a gene dosage effect.

Abstract

Oocyte activation failure is thought to be one of the main factors for total fertilisation failure (TFF) after intracytoplasmic sperm injection (ICSI), which could be induced by abnormal calcium oscillations. Phospholipase C zeta (PLCZ), a sperm factor, is associated with Ca2+ oscillations in mammalian oocytes. To date, some mutations in PLCZ1 (the gene that encodes PLCZ) have been linked to TFF, as demonstrated by the observed reduction in protein levels or activity to induce Ca2+ oscillations. In this study, normozoospermic males whose sperms exhibited TFF after ICSI and their families were recruited. First, mutations in the PLCZ1 sequence were identified by whole exome sequencing and validated using Sanger sequencing. Then, the locations of PLCZ1/PLCZ and the transcript and protein levels in the sperm of the patients were studied. Subsequently, in vitro function analysis and in silico analysis were performed to investigate the function–structure correlation of mutations identified in PLCZ1 using western blotting, immunofluorescence, RT-qPCR, and molecular simulation. Ca2+ oscillations were detected after cRNA microinjection into MII mouse oocytes to investigate calcium oscillations induced by abnormal PLCZ. Five variants with compound heterozygosity were identified, consisting of five new mutations and three previously reported mutations distributed across the main domains of PLCZ, except the EF hands domain. The transcript and protein levels decreased to varying degrees among all detected mutations in PLCZ1 when transfected in HEK293T cells. Among these, mutations in M138V and R391* of PLCZ were unable to trigger typical Ca2+ oscillations. In case 5, aberrant localisation of PLCZ in the sperm head and an increased expression of PLCZ in the sperm were observed. In conclusion, this study enhances the potential for genetic diagnosis of TFF in clinics and elucidates the possible relationship between the function and structure of PLCZ in novel mutations.

Open access