Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Zi-Jiang Chen x
Clear All Modify Search
Free access

Kai Zhu, Shang Li, Jiansheng Liu, Yan Hong, Zi-Jiang Chen and Yanzhi Du

Polycystic ovary syndrome, a common condition characterized by endocrine dysfunction, menstrual irregularity, anovulation and polycystic ovaries, affects 5–7% of reproductive-age women. RAB5B, which is identified by a genome-wide association study as a risk locus for this syndrome, encodes a small GTPase involved in control of receptor internalization and early endosome fusion. We found that RAB5A mRNA levels in luteinized granulosa cells of obese patients with polycystic ovary syndrome were lower than in those of obese women without the syndrome. RAB5A regulated follicle-stimulating hormone (FSH)-mediated translocation of the FSH receptor (FSHR) from the membrane to the cytoplasm and the subsequent FSH–FSHR signaling pathway. We showed that RAB5A negatively regulated aromatase expression and estradiol synthesis in human granulosa cells in association with changes in FSHR levels by way of the cAMP/PKA/CREB pathway. The regulation of FSHR by RAB5A may have been associated with two transcription factors, USF1 and USF2. In conclusion, RAB5A gene was abnormally expressed in luteinized granulosa cells of obese patients with polycystic ovary syndrome, which may help explain high FSHR levels found in this syndrome.

Free access

Junyu Zhai, Jiansheng Liu, Shigang Zhao, Han Zhao, Zi-Jiang Chen, Yanzhi Du and Weiping Li

The aim of the present study was to elucidate the effects of kisspeptin-10 (Kp-10) on ovarian hyperstimulation syndrome (OHSS) and its related mechanism in OHSS rat models, human umbilical vein endothelial cells (HUVECs) and human luteinized granulosa cells. OHSS is a systemic disorder with high vascular permeability (VP) and ovarian enlargement. KISS1R (KISS1 receptor) is the specific receptor of kisspeptin. The kisspeptin/KISS1R system inhibits the expression of vascular endothelial growth factor (VEGF), which is the main regulator of VP. In our study, decreased expression of Kiss1r was observed in both ovaries and lung tissue of OHSS rats. Injection of exogenous Kp-10 inhibited the increase of VP and VEGF while promoting the expression of Kiss1r in both the ovarian and lung tissue of OHSS rats. Using HUVECs, we revealed that a high level of 17-β estradiol (E2), a feature of OHSS, suppressed the expression of KISS1R and increased VEGF and nitric oxide (NO) through estrogen receptors (ESR2). Furthermore, KISS1R mRNA also decreased in the luteinized human granulosa cells of high-risk OHSS patients, and was consistent with the results in rat models and HUVECs. In conclusion, Kp-10 prevents the increased VP of OHSS by the activation of KISS1R and the inhibition of VEGF.

Free access

Kaiyue Zhang, Wanxia Zhong, Wei-Ping Li, Zi-Jiang Chen and Cong Zhang

Poor ovarian response is a significant problem encountered during in vitro fertilization and embryo transfer procedures. Many infertile women may suffer from poor ovarian response and its incidence tends to be increasing in young patients nowadays. It is a major cause of maternal infertility because it is associated with low pregnancy and live birth rates. However, the cause of poor ovarian response is not clear. In this study, we extracted microRNAs from human follicular fluid and performed miRNA sequencing to investigate a potential posttranscriptional mechanism underlying poor ovarian response. The results showed that many miRNAs were obviously different between the poor ovarian response and non-poor ovarian response groups. We then performed quantitative polymerase chain reaction, Western blot analysis and used an in vitro culture system to verify the sequencing results and to study the mechanism. Notably, we found that miRNA-15a-5p was significantly elevated in the young poor ovarian response group. Furthermore, we demonstrated that high levels of miR-15a-5p in the young poor ovarian response group repressed granulosa cell proliferation by regulating the PI3K-AKT-mTOR signaling pathway and promoted apoptosis through BCL2 and BAD. This could explain the reduced oocyte retrieval number seen in poor ovarian response patients.

Free access

Jing Tong, Shile Sheng, Yun Sun, Huihui Li, Wei-Ping Li, Cong Zhang and Zi-Jiang Chen

Good-quality oocytes are critical for the success of in vitro fertilization (IVF), but, to date, there is no marker of ovarian reserve available that can accurately predict oocyte quality. Melatonin exerts its antioxidant actions as a strong radical scavenger that might affect oocyte quality directly as it is the most potent antioxidant in follicular fluid. To investigate the precise role of endogenous melatonin in IVF outcomes, we recruited 61 women undergoing treatment cycles of IVF or intracytoplasmic sperm injection (ICSI) procedures and classified them into three groups according to their response to ovarian stimulation. Follicular fluid was collected to assess melatonin levels using a direct RIA method. We found good correlations between melatonin levels in follicular fluid with age, anti-Müllerian hormone (AMH) and baseline follicle-stimulating hormone (bFSH), all of which have been used to predict ovarian reserve. Furthermore, as melatonin levels correlated to IVF outcomes, higher numbers of oocytes were collected from patients with higher melatonin levels and consequently the number of oocytes fertilized, zygotes cleaved, top quality embryos on D3, blastocysts obtained and embryos suitable for transplantation was higher. The blastocyst rate increased in concert with the melatonin levels across the gradient between the poor response group and the high response group. These results demonstrated that the melatonin levels in follicular fluid is associated with both the quantity and quality of oocytes and can predict IVF outcomes as well making them highly relevant biochemical markers of ovarian reserve.

Free access

Shu-Zhen Liu, Li-Juan Yao, Man-Xi Jiang, Zi-Li Lei, Li-Sheng Zhang, Yan-Ling Zhang, Qing-Yuan Sun, Yue-Liang Zheng, Xiang-Fen Song and Da-Yuan Chen

In this study, we investigated the development, the cell number of the blastocyst, and apoptosis in rabbit nuclear transfer (NT) embryos derived from adult fibroblasts and cumulus cells as compared with embryos derived from in vivo fertilization and in vitro culture. The developmental rate and the total cell number of the blastocyst were significantly lower in NT embryos than in fertilized embryos (FEs). The type of donor cells did not affect the embryonic developmental rate and the total cell number of blastocysts in NT groups. The present study investigated the onset and the frequency of apoptosis in NT embryos and FEs by using a terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling (TUNEL) assay. The earliest positive TUNEL signals were detected at the eight-cell stage in NT embryos and at the morula stage in FEs. The apoptotic index of the total blastocysts, the inner cell mass and the trophoderm was greatly higher in the NT embryos than in FEs. Moreover, the apoptotic index of the blastocyst from fibroblasts was significantly higher than that of the blastocyst from cumulus cells.