Eleven age-matched (±4 days) Hereford heifers were examined by transrectal ultrasonography daily for 18 days beginning 20 weeks (5 months) before puberty (first ovulation) to determine the suitability of the transrectal ultrasound technique for imaging the ovaries of prepubertal heifers and to test the hypothesis that ovarian follicular development occurs in waves in prepubertal heifers. Satisfactory ovarian images were obtained during preliminary ultrasound examinations conducted 4 weeks before the observational period (that is 32 weeks of age), during which a semirigid probe extension was used to allow external manipulation of the intrarectally placed ultrasound transducer. Daily examinations commencing at 36 weeks of age were accomplished by intrarectal placement of the operator's hand and transducer, without complication, in all 11 heifers throughout the observational period. Periodic increases in the number of follicles detected (day effect, P < 0.02) were inversely related to the diameter of the largest follicle (r = −0.3, P < 0.03). Portions of three anovulatory follicular waves were detected in all heifers during the observational period (first and third waves in part and second wave in whole). Individual follicles destined to assume a dominant or subordinate position in a wave were retrospectively identified and monitored beginning at a diameter of 4–5 mm. The interval between the emergence of dominant follicles of successive waves (interwave interval) was 8.0 ± 0.4 days and the interval between successive maxima in the number of follicles per heifer per day was 8.1 ± 0.5 days. The growing phase of the dominant follicles best fit a quadratic curve. The growing phase of the largest subordinate follicles, and the static and regressing phases of dominant and subordinate follicles best fit simple linear expressions. Periodic surges in serum concentrations of FSH (day effect, P < 0.0001), but not of LH (day effect, not significant), were associated with follicular wave dynamics. FSH surges (increase and decrease, respectively, best fit quadratic curves) spanned a mean of 3 days and reached maximum values 0.9 ± 0.3 days before emergence of the wave. Results supported the hypothesis that follicular development occurs in waves in prepubertal heifers. Mechanisms controlling the well-ordered phenomena of wave emergence, follicle selection and follicle regression, similar to those of sexually mature heifers, were present in 36-week-old prepubertal heifers.
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 254 | 115 | 16 |
PDF Downloads | 300 | 176 | 4 |