Co-expression of cytokeratins and vimentin by highly invasive trophoblast in the white-winged vampire bat, Diaemus youngi, and the black mastiff bat, Molossus ater, with observations on intermediate filament proteins in the decidua and intraplacental trophoblast

in Reproduction
Authors:
N. K. Badwaik
Search for other papers by N. K. Badwaik in
Current site
Google Scholar
PubMed
Close
,
J. J. Rasweiler IV
Search for other papers by J. J. Rasweiler IV in
Current site
Google Scholar
PubMed
Close
, and
F. Muradali
Search for other papers by F. Muradali in
Current site
Google Scholar
PubMed
Close
Free access

Sign up for journal news

Histological and immunocytochemical studies of gravid reproductive tracts obtained from the white-winged vampire bat (Diaemus youngi) and the black mastiff bat (Molossus ater) have established that both species develop unusually invasive trophoblast. This is released by the developing discoidal haemochorial placenta, expresses both cytokeratins and vimentin, and invades the myometrium and adjacent tissues (including the ovaries) via interstitial migration within the walls of maternal blood vessels. Hence, this trophoblast is noteworthy for the extent to which it undergoes an epithelial–mesenchymal transformation. In Molossus, it originates from the cytotrophoblastic shell running along the base of the placenta, is mononuclear, and preferentially invades maternal arterial vessels serving the discoidal placenta. This trophoblast may have a role in dilatation of these vessels when the discoidal placenta becomes functional. In Diaemus, the highly invasive trophoblast appears to originate instead from a layer of syncytiotrophoblast on the periphery of the placenta, is multinucleated, and vigorously invades both arterial and venous vessels. During late pregnancy, it becomes extensively branched and sends attenuated processes around many of the myometrial smooth muscle fibres. In view of its distribution, this trophoblast could have important influences upon myometrial contractility and the function of blood vessels serving the gravid tract. Other aspects of intermediate filament expression in the uteri and placentae of these bats are also noteworthy. Many of the decidual giant cells in Molossus co-express cytokeratins and vimentin, while the syncytiotrophoblast lining the placental labyrinth in Diaemus late in pregnancy expresses little cytokeratin.

 

  • Collapse
  • Expand