Markers of follicle function in Belclare-cross ewes differing widely in ovulation rate

in Reproduction
Authors:
K. Reynaud
Search for other papers by K. Reynaud in
Current site
Google Scholar
PubMed
Close
,
J. P. Hanrahan
Search for other papers by J. P. Hanrahan in
Current site
Google Scholar
PubMed
Close
,
A. Donovan
Search for other papers by A. Donovan in
Current site
Google Scholar
PubMed
Close
, and
M. A. Driancourt
Search for other papers by M. A. Driancourt in
Current site
Google Scholar
PubMed
Close
Free access

Sign up for journal news

High prolificacy due to a gene that has a large effect on ovulation rate has been noted in Booroola and Inverdale ewes. High prolificacy in the Belclare breed (a composite developed from stocks selected for very large litter size or high ovulation rate) may be related to the segregation of two genes. The aims of this study were (i) to compare the morphological and functional features of ovulatory follicles from carriers (which could only be heterozygous for the genes of interest) and non-carriers, and (ii) to identify markers of the Belclare genes among secreted or cellular ovarian proteins. Belclare carrier ewes had more ovulatory follicles (4.9 ± 0.4) than did non-carrier ewes (2.0 ± 0.2) (P < 0.001). Ovulatory follicles from carriers were also smaller (4.4 ± 0.1 mm versus 5.7 ± 0.2 mm, P < 0.001) and contained a significantly reduced number of granulosa cells (P < 0.001). However, the proportion of proliferating granulosa cells in ovulatory follicles was similar in both groups. The in vitro secretion of steroids per follicle was only marginally lower in follicles from Belclare carriers compared with non-carriers. Furthermore, similar concentrations of steroidogenic enzymes were present in both groups, indicating that steroidogenic potential per granulosa cell is similar between carriers and non-carriers. Possible markers of the Belclare genes were identified among cellular proteins of follicular walls by two-dimensional PAGE and image analysis. Two spots at 78 and 49 kDa were always absent in samples from non-carriers. When secreted proteins in follicles from carriers were compared with those from non-carriers, two spots at 53 and 41 kDa were restricted to samples from carriers and three spots at 97, 91 and 45 kDa were unique to samples from non-carriers. Interestingly, the spot at 91 kDa is also affected by the Booroola gene.

 

  • Collapse
  • Expand