Dominant distribution of mitochondrial DNA from recipient oocytes in bovine embryos and offspring after nuclear transfer

in Reproduction

In the process of nuclear transfer, heteroplasmic sources of mitochondrial DNA from a donor cell and a recipient oocyte are mixed in the cytoplasm of the reconstituted embryo. The distribution of mitochondrial DNA heteroplasmy in nuclear transfer bovine embryos and resultant offspring was investigated by measuring polymorphism in the displacement loop region of mitochondrial DNA using PCR-mediated single-strand conformation polymorphism. Most offspring (20 of 21 calves) from recipient oocytes of undefined mitochondrial DNA genotypes showed different genotypes from the mitochondrial DNA of donor cells. The single calf that was an exception showed heteroplasmy, including the donor mitochondrial DNA genotype. Six cloned calves were produced from oocytes of a defined mitochondrial DNA genotype. All of these clonal members and various tissues showed only the mitochondrial DNA genotype derived from the oocyte. The mitochondrial DNA from donor cells appeared to be eliminated during early embryonic development; it gradually decreased at the early cleavage stages and was hardly detectable by the blastocyst stage. These results indicate that the genotype of mitochondrial DNA from recipient oocytes may become the dominant category of mitochondrial DNA in calves resulting from nuclear transfer.


An official journal of

Society for Reproduction and Fertility


Cited By


Google Scholar

Related Articles



All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 37 37 37
PDF Downloads 63 63 63