Gap-junctional communication in mouse cumulus-oocyte complexes: implications for the mechanism of meiotic maturation

in Reproduction
Authors:
RJ Webb
Search for other papers by RJ Webb in
Current site
Google Scholar
PubMed
Close
,
H Bains
Search for other papers by H Bains in
Current site
Google Scholar
PubMed
Close
,
C Cruttwell
Search for other papers by C Cruttwell in
Current site
Google Scholar
PubMed
Close
, and
J Carroll
Search for other papers by J Carroll in
Current site
Google Scholar
PubMed
Close
Free access

Sign up for journal news

The mechanisms underlying the hormonal stimulation of meiotic maturation are not understood. The most prevalent hypothesis is that hormone-induced maturation is stimulated by an increase in the intracellular messengers, cAMP or Ca2+. This study investigated whether Ca2+ transients in somatic cells can lead to Ca2+ transients in the oocyte, and whether hormones that stimulate meiotic maturation of mouse oocytes in vitro and in vivo stimulate an increase in intracellular Ca2+. Of a range of potential agonists of Ca2+ release, ATP and UTP were the only agents that stimulated Ca2+ release in cumulus cells. ATP-induced Ca2+ release is from intracellular stores, as the response is not blocked by chelation of extracellular Ca2+, but is inhibited by the Ca2+-ATPase inhibitor, thapsigargin. ATP and UTP are equipotent, consistent with the receptor being of the P2Y2 type. Confocal microscopy was used to show that ATP-induced Ca2+ release in cumulus cells leads to a Ca2+ increase in the oocyte. Inhibition of gap-junctional communication using carbenoxolone, as assayed by dye transfer, inhibited the diffusion of the Ca2+ signal from the cumulus cells to the oocyte. Thus, provided that a Ca2+ signal is generated in the somatic cells in response to maturation-inducing hormones, it is feasible that a Ca2+ transient is generated in the oocyte. However, FSH and EGF, both of which stimulate maturation in vitro, have no effect on Ca2+ in cumulus--oocyte complexes. Furthermore, LH, which leads to meiotic maturation in vivo, did not stimulate Ca2+ release in acutely isolated granulosa cells from preovulatory mouse follicles. These studies indicate that ATP may play a role in modulating ovarian function and that diffusion of Ca2+ signals through gap junctions may provide a means of communication between the somatic and germ cells of the ovarian follicle. However, our data are not consistent with a role for Ca2+-mediated communication in hormone-mediated induction of meiosis in mice.

 

  • Collapse
  • Expand