The FecB (Booroola) gene acts at the ovary: in vivo evidence

in Reproduction
Authors:
BK Campbell
Search for other papers by BK Campbell in
Current site
Google Scholar
PubMed
Close
,
DT Baird
Search for other papers by DT Baird in
Current site
Google Scholar
PubMed
Close
,
CJ Souza
Search for other papers by CJ Souza in
Current site
Google Scholar
PubMed
Close
, and
R Webb
Search for other papers by R Webb in
Current site
Google Scholar
PubMed
Close
Free access

Sign up for journal news

The aim of this study was to differentiate between pituitary and ovarian actions of the FecB gene by measuring the ovarian response to a standardized treatment with gonadotrophins designed to mimic the changes in FSH and LH that occur in the follicular phase of the ovarian cycle in ewes, with (Fec(B/-), n=6) and without (Fec(+/+), n=9) the gene, that were rendered hypogonadotrophic by pretreatment with a potent antagonist of GnRH. Ewes with ovarian autotransplants were used to facilitate the assessment of follicular function by the collection of ovarian venous blood and ultrasonography. The gonadotrophin regimen resulted in concentrations of FSH and LH that were similar to concentrations found in a normal cycle and did not differ between genotypes. Follicular development and ovulation occurred in all animals, and patterns of secretion of oestradiol, androstenedione and inhibin A were normal. Despite these endocrine similarities, the antral follicle population stimulated by FSH infusion retained the characteristic genotypic difference with the ovaries of Fec(+/+) animals containing a range of follicle sizes with decreasing proportions of small (<3.5 mm in diameter) and medium (3.5-4.5 mm in diameter) follicles as well as large follicles (> or =4.5 mm in diameter), whereas the ovaries of Fec(B/-) ewes contained no follicles of >4.5 mm in diameter. This genotypic difference was retained after ovulation with gene carriers having more preovulatory follicles/corpora lutea (3.8+/-0.3) of a smaller diameter (5.3+/-0.3 mm) than did non-gene carriers (1.7+/-0.3; 11.4+/-0.9 mm; P<0.05). As ewes carrying the FecB gene mutation were able to ovulate more follicles than non-gene carriers, despite identical concentrations and patterns of FSH and LH stimulation, the results of this study support the hypothesis that the FecB gene acts at the ovary to enhance ovarian sensitivity to gonadotrophic stimulation.

 

  • Collapse
  • Expand