Summary. Between the 1-cell zygote and the early blastocyst stage of mouse embryos the net rate of uptake of methionine increased, the internal pool became progressively more expanded and less easily reached steady state, and the specificity of competitor amino acids changed. Sodium-dependent transport was first detected in compacted morulae (16–32-cell stage). Uptake of [14C]methylaminoisobutyric acid was detectable in blastocysts but not in unfertilized eggs. Efflux of methionine by an exchange transport system was detectable at all stages, but in intact blastocysts much higher external concentrations were required to activate exchange transport. An exchange system with properties similar to that operating at cleavage stages was exposed when blastocysts were collapsed with cytochalasin D. Since this exchange system was not detectable in isolated inner cell masses, it may be confined to the juxtacoelic surface of trophectoderm cells.
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 454 | 325 | 19 |
PDF Downloads | 88 | 16 | 0 |