Summary. The secretion of progesterone and 20α-hydroxypregn-4-en-3-one (20α-dihydroprogesterone) by granulosa cells from 30-day-old rats pretreated with PMSG (4 i.u.; i.p.) was significantly increased in a time- and concentration-dependent manner by FSH or cytochalasin B. Whereas FSH markedly stimulated progestagen secretion during 3 h of incubation, a significant enhancement of the steroidogenic response was not noted until 12 h of exposure to the inhibitor in vitro. Although cytochalasin B also enhanced the submaximal stimulation of progestagen production by FSH (15 ng/ml), it was ineffective in the presence of maximal stimulatory concentration of the gonadotrophin (150 ng/nl). With increasing concentrations of cytochalasin B, the ability of FSH to further stimulate progestagen secretion was progressively reduced. Granulosa cells cultured in medium alone contained a prominent cytoplasmic array of microfilaments which was markedly reduced by FSH or cytochalasin B. FSH and, to a greater extent, cytochalasin B elicited concentration-dependent reductions in the mean area occupied by the cells on the culture surface, the contour index (a size-independent representation of cell profile irregularity) and cell perimeter, indicating that the cells underwent less spreading and were more spherical and regular in outline in the presence of either agent. The FSH-induced reductions in the three shape-related parameters were augmented by cytochalasin B although the influence of the FSH on the mean area and perimeter was progressively reduced in the presence of higher concentrations of cytochalasin B. These findings are consistent with the concept that microfilaments influence cell shape and steroidogenesis in granulosa cells in vitro and that FSH alters microfilament distribution and shape of cultured granulosa cells in eliciting its steroidogenic influence.
Keywords: microfilaments; steroidogenesis; FSH; granulosa cells
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 225 | 68 | 38 |
PDF Downloads | 67 | 16 | 2 |