Summary. Intact, immature female rats were primed with PMSG and treated with 4 injections of DHT. DHT given at 0, 12, 24 and 36 h caused a significant decrease in the ovulation rate 72 h after the PMSG treatment. Concurrent treatment with oestrogen reversed the inhibitory effects of the androgen. The androgen effect was apparently exerted directly on the ovary since DHT did not alter the surge of LH and FSH which occurred at 58 h after PMSG treatment. The DHT inhibition of ovulation was observed in the treatment cycle as well as in subsequent cycles which followed a second PMSG injection. This finding suggests that intermediate size follicles were also adversely affected by the androgen. To confirm that androgen affects follicles of all size ranges, follicles < 200 μm, 200–400 μm and > 400 μm in diameter were isolated from the ovaries of rats treated with PMSG and DHT or the vehicle. The follicles were isolated by density gradient separation of follicles followed by filtration with precalibrated Teflon sieves. In some experiments, granulosa cells were also harvested from isolated follicles. DHT treatment did not affect the numbers of follicles of any size but did reduce the oestrogen content of follicles of all sizes. Follicles from DHT-treated animals contained fewer granulosa cells and the cells from treated animals had lower aromatase activity than did cells from control rats. Taken together, these findings suggest that DHT reduces the ovulation rate by decreasing the number of granulosa cells/follicle and by altering the oestrogen synthetic abilities of the cells. All follicles, regardless of size, were sensitive to androgen treatment.
Keywords: androgen; dihydrotestosterone; follicle growth; ovulation; PMSG; rat
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 185 | 46 | 8 |
PDF Downloads | 142 | 33 | 6 |