Mechanism controlling ovulation rate in ewes in relation to seasonal anoestrus

in Reproduction
Authors:
R. Webb
Search for other papers by R. Webb in
Current site
Google Scholar
PubMed
Close
,
G. Baxter
Search for other papers by G. Baxter in
Current site
Google Scholar
PubMed
Close
,
D. McBride
Search for other papers by D. McBride in
Current site
Google Scholar
PubMed
Close
,
M. Ritchie
Search for other papers by M. Ritchie in
Current site
Google Scholar
PubMed
Close
, and
A. J. Springbett
Search for other papers by A. J. Springbett in
Current site
Google Scholar
PubMed
Close
Free access

Sign up for journal news

Summary. Three experiments were carried out during seasonal anoestrus in Finnish Landrace and Scottish Blackface ewes, to establish whether the differences between the breeds in ovulation rate are functional during the non-breeding season and are therefore independent of the mechanism controlling ovulation.

In Expt 1, follicles ⩾2 mm in diameter were dissected from the ovaries of both breeds and incubated individually for 2 h to assess their ability to secrete oestradiol and testosterone. In both breeds, follicles producing ⩾500 pg oestrogen/ml/h (oestrogen-active) were readily identifiable from a population producing less (oestrogen-inactive). The number of oestrogen-active follicles in each breed was similar to the number of ovulations near the end of the breeding season. Oestrogen-active follicles also had more luteinizing hormone (LH) receptors and larger diameters than oestrogen-inactive follicles. There were, however, no significant differences between the two follicle types in follicular fluid or in-vitro testosterone concentrations.

In Expt 2, seasonally anoestrous Scottish Blackface ewes were unilaterally ovariectomized; the second ovary was removed 7 days later. Follicles from both ovaries were processed as described for Expt 1; oestrogen-active follicles were categorized according to their ability to produce >500 pg/ml/h. There were twice as many oestrogen-active follicles in the second ovary as in the first ovary; the number of oestrogen-active follicles in the second ovary was also similar to the total number of oestrogen-active follicles in both ovaries of the Scottish Blackface ewes in Expt 1. There were no significant differences between the first and second ovaries for any of the other parameters measured in oestrogen-active follicles. There were no significant changes in peripheral gonadotrophin concentrations measured 24 h after removal of the first ovary.

In Expt 3, seasonally anoestrous ewes of both breeds were challenged with an ovulatory dose of human chorionic gonadotrophin (hCG) (750 iu). There was a significant difference in the mean number of ovulations between the breeds and it was representative for the breed (Finnish Landrace 2·6 ± 0·2; Scottish Blackface 1·6 ± 0·2 mean ovulations per ewe). None of the saline-treated controls ovulated.

The results demonstrated that the mechanism controlling the number of mature, oestrogen-active follicles, and hence ovulation rate, is functional during seasonal anoestrus. This conclusion was confirmed by the observation that compensatory ovarian hypertrophy also occurs during seasonal anoestrus.

Keywords: sheep; follicle; ovulation rate; steroidogenesis; seasonal anoestrus

 

  • Collapse
  • Expand