External ionic conditions, internal pH and motility of ram and boar spermatozoa

in Reproduction

Internal pH and motility of testicular, epididymal and ejaculated ram and boar spermatozoa were studied as a function of external ionic composition. Internal pH was estimated by the amine distribution method and motility was characterized by percentage of cells that were motile and flagellar beat frequency. Upon dilution in media at different external pH values, internal pH of boar and ram spermatozoa changed rapidly towards the external pH. High external concentrations of Na+ or K+ had no effect on the rate of equilibration and only a slight effect on the final internal pH value, ruling out a role of Na+–H+ or K+–H+ exchange mechanisms in this process. In both species, a linear relationship was observed between internal and external pH but equilibration was incomplete suggesting that there is a complex regulatory mechanism. This result was unaffected by epididymal maturation and ejaculation. Ram and boar testicular spermatozoa showed no increase in movement after dilution, suggesting that simple changes in internal pH are not a sufficient trigger for motility. At high external pH, internal pH increased and motility of epididymal boar spermatozoa was initiated. Motility of ejaculated boar spermatozoa, and epididymal and ejaculated ram spermatozoa was less dependent upon external pH and affected only very slightly by the internal pH changes. K+ or Na+ had almost no effect on motility just after dilution. After 1 h of incubation, movement decreased. Maintenance of motility in sodium or potassium showed a sharp external pH optimum. Media without Na+ and K+ allowed a better conservation of motility at external pH > 8 for ram epididymal and ejaculated spermatozoa and at external pH > 6 for boar ejaculated spermatozoa.


An official journal of

Society for Reproduction and Fertility

Index Card

Cited By


Google Scholar

Related Articles



All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 8
PDF Downloads 57 57 5