Fats in the diet can influence reproduction positively by altering both ovarian follicle and corpus luteum function via improved energy status and by increasing precursors for the synthesis of reproductive hormones such as steroids and prostaglandins. Dietary fatty acids of the n-3 family reduce ovarian and endometrial synthesis of prostaglandin F2alpha, decrease ovulation rate in rats and delay parturition in sheep and humans. Polyunsaturated fatty acids such as linoleic, linolenic, eicosapentaenoic and docosahexaenoic acids may inhibit prostaglandin F2alpha synthesis through mechanisms such as decreased availability of its precursor arachidonic acid, an increased competition by these fatty acids with arachidonic acid for binding to prostaglandin H synthase, and inhibition of prostaglandin H synthase synthesis and activity. It is not known whether polyunsaturated fatty acids regulate expression of candidate genes such as phospholipase A2 and prostaglandin H synthase via activation of nuclear transcription factors such as peroxisome proliferator-activated receptors. Manipulation of the fatty acid profile of the diet can be used potentially to amplify suppression of uterine synthesis of prostaglandin F2alpha during early pregnancy in cattle, which may contribute to a reduction in embryonic mortality. Feeding fats and targeting of fatty acids to reproductive tissues may be a potential strategy to integrate nutrition and reproductive management to improve animal productivity.
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 493 | 187 | 41 |
PDF Downloads | 478 | 185 | 22 |