Evidence from mouse mutants indicates that the Kit gene encoding KIT, a receptor present on the oocyte and theca cells, and the Mgf gene encoding KIT LIGAND, the ligand of KIT, are important regulators of oogenesis and folliculogenesis. Recently, in vitro cultures of fetal gonads, of follicles and of oocytes have identified specific targets for the KIT-KIT LIGAND interaction. In fetal gonads, an anti-apoptotic effect of KIT-KIT LIGAND interactions on primordial germ cells, oogonia and oocytes has been demonstrated. In postnatal ovaries, the initiation of follicular growth from the primordial pool and progression beyond the primary follicle stage appear to involve KIT-KIT LIGAND interactions. During early folliculogenesis, KIT together with KIT LIGAND controls oocyte growth and theca cell differentiation, and protects preantral follicles from apoptosis. Formation of an antral cavity requires a functional KIT-KIT LIGAND system. In large antral follicles, the KIT-KIT LIGAND interaction modulates the ability of the oocyte to undergo cytoplasmic maturation and helps to maximize thecal androgen output. Hence, many steps of oogenesis and folliculogenesis appear to be, at least in part, controlled by paracrine interactions between these two proteins.
Reproduction is committed to supporting researchers in demonstrating the impact of their articles published in the journal.
The two types of article metrics we measure are (i) more traditional full-text views and pdf downloads, and (ii) Altmetric data, which shows the wider impact of articles in a range of non-traditional sources, such as social media.
More information is on the Reasons to publish page.
Sept 2018 onwards | Past Year | Past 30 Days | |
---|---|---|---|
Full Text Views | 544 | 313 | 15 |
PDF Downloads | 292 | 177 | 9 |